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Software requirements 
 
The model files accompanying the book are written for Microsoft Excel 2007 and, for 

Berkeley Madonna version 9+, except for the model files for chapters 8 and 9, which require 

Berkeley Madonna version 8.  Earlier releases of the files are available on the website.  

 
Berkeley Madonna can be downloaded and purchased from the website 

http://www.berkeleymadonna.com/ 

 
 
 
 
 

Changes since version 4 
 

All the Berkeley Madonna files, except those for chapters 8 and 9 have been updated to use 

version 10.  The documentation has been updated to reflect this.  Also, an error in the 

labelling of columns O and P in model file 4.2 has been corrected.  If you spot any issues, 

please do let us know by email through the book’s website. 

 

Copyright 
 

You are welcome to use the model files for personal study and we hope that you find them 

helpful. Unfortunately, due to copyright restrictions, use of the files on organised courses is 

not permitted without the written permission of the authors.  You can contact the authors via 

the feedback link on the website www.anintroductiontoinfectiousdiseasemodelling.com. 

 

 

 

. 
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http://www.berkeleymadonna.com/
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Using the Berkeley Madonna files 

 

1.1 Introduction 

Berkeley Madonna is a specialist model-building package that is used to set up models 

using difference or (most commonly) differential equations.   

 

For all of the online exercises accompanying the book you will just need to run the models 

that have already been set up in Berkeley Madonna, or to change the input parameters.  

This document provides an overview of the key features of the package and the model files 

that you need to know in order to do this.   

 

Further detailed instructions about using Berkeley Madonna can be found in the online 

guide, currently available at https://berkeley-madonna.myshopify.com/pages/technical-faq 

 

 

1.2 The basics of running models in Berkeley Madonna 

1.2.1 The flowchart and equation editors 
 

Models can be set up in Berkeley Madonna using either the flowchart or equation editor. 

 

The flowchart approach involves drawing a flowchart of the model, which provides a visual 

summary of all the equations and how the components are linked together.  The equation 

editor requires users to type in the differential equations directly and, with this approach, 

Berkeley Madonna does not provide a flow diagram.  

 

Wherever possible, the models accompanying this book are set up using both methods and 

you can choose which approach you work with.   

 

The method for running models in Berkeley Madonna is identical irrespective of whether the 

model is set up using the flowchart or equation editor.  We outline the main differences 

between models set up using the two approaches below.  

 

 

 

1.2.2 Layout of the model files 
 

1. Start up Berkeley Madonna.  If error messages appear, relating to chemrxnl.dll failing to 

load, and Chemical Reaction Server registration failing, click on OK to continue.  These are 

http://www.anintroductiontoinfectiousdiseasemodelling.com/
https://berkeley-madonna.myshopify.com/pages/technical-faq
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minor errors which are usually present when you install Berkeley Madonna and do not affect 

the running of the program.  

 

 

2. Open the file bm_demo – flowchart.mmd. 

 

You should now see three panels resembling the following:  

 

 
 

 

The three panels are as follows: 

1. The left panel  holds the equations in the model. 

2. The middle panel, which currently has 4 tabs, which are labelled Flowchart, Graph 0, 

Globals and Notes respectively,  The Flowchart tab holds the flow diagram of the 

model. the Graph 0 tab holds an empty graph when you open the window, the 

Globals tab holds the parameters and variables used in the model and the Notes tab 

holds the name and key features of the model. 

3. The right panel holds the parameters of the model. 

 

The next page shows the layout of the same model, which is set up using the equation editor 

(bm_demo – equations.mmd).  It is identical to the layout for the model set up using the 

flowchart, except that the equations in the left panel are written more concisely than those in 

flowchart version and the middle panel doesn’t have the flow diagram and globals tabs: 

 

http://www.anintroductiontoinfectiousdiseasemodelling.com/
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Each of the panels and the tabs in the middle panel is described below.  Note that if any 

panel is not visible at any time, it can usually be found in the list accessible through the 

Window option in the main menu.  The Window option also provides further options for 

changing the layout. 

 

1.2.3 The middle panel - flowchart tab (flowchart version only) 

 

The flowchart tab has a diagram which shows the general structure of the model.  The 

following shows the flow diagram that you should see in the flowchart tab for Bm_demo:  

 
Berkeley Madonna refers to the blue cylinders as ‘reservoirs’.  These represent the number 

of individuals in each category (i.e. Susceptible, Pre-infectious, Infectious or Immune) at a 

given time t.   

 

1. Double click on the Susceptible reservoir. 

 

You should see now the following window, which specifies the number of individuals that are 

susceptible at the start.  This currently equals Sus_0; we will show where Sus_0 is defined 

later. The initial values for the other compartments are set up in a similar way.   

 

http://www.anintroductiontoinfectiousdiseasemodelling.com/
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2. If you have not yet done so, click on the cancel button to exit this window. 

 

The flow diagram has two types of arrows.  The flow arrow with the circle in the middle 

 contains the expression for the number of individuals who move from one category 

to the next.  The thin arc arrows tell Berkeley Madonna which components in the 

model are used in the expression in the component to which it points.  For example, as we 

shall see below, the expression for the number of new infections per unit time is given by: 

 

β*Susceptible*Infectious 

 

Therefore, since the numbers of susceptible and infectious individuals are used in this 

expression, there are thin arrows going from the susceptible and the infectious 

compartments to the new infections arrow.   

 

3. Double click on the circle of the flow arrow labelled ‘new infections’.  You should see the 

following window, which has the equation for the number of new infections per unit time.  

 

 
 

 

This contains the expression 

for the number of individuals 

who are newly infected per 

unit time. 

These terms can be 

used in the 

expressions for the 

flow arrows.  

http://www.anintroductiontoinfectiousdiseasemodelling.com/
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4. If you have not yet done so, click on the cancel button to exit the window.  In a similar 

way, double click on the new infectious and newly recovered arrows to see the equations for 

the number of individuals who become infectious or who recover per unit time respectively.  

 

1.2.4 Middle panel – globals tab   

 

After clicking on the “Globals” tab, you should now see the following window, which contains 

the input parameters.  

 
 

Comments that help you follow the code, but are ignored by Berkeley Madonna, can be 

included in curly brackets; anything on the same line after a semi-colon is ignored and 

therefore any comment can be included on the same line as an equation, as long as it is 

preceded by a semi-colon. 

 

Notice that there is a space on either side of the equals sign in the equations.  Berkeley 

Madonna sometimes requires these spaces to be inserted as otherwise, the equations are 

ignored.  

 

 

 

1.2.5 Middle panel – Graph tab  
The middle panel also holds the model output generated by Berkeley Madonna when you 

run the model.  The output is displayed as a graph, which is labelled as “Graph0” and which 

http://www.anintroductiontoinfectiousdiseasemodelling.com/
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can be viewed by clicking on the tab with this label.  The following shows what you will see in 

the Graph0 tab when you first open up bm_demo without running the model. 

 

 
 

 

Section 1.2.9 describes the content of the Graph0 tab in further detail, as well as what you 

will see after running the model. 

 

The bottom of this window includes a section with sliders:. 

 

 
 

Values for parameters can be changed by clicking on the slider for that parameter and 

dragging it to the left or to the right, as appropriate, using either the mouse or the arrow 

keys.  For example, clicking on the vertical bar  of the slider for the pre-infectious period in 

the file “Bm_demo”, and then dragging it to the right will result in the assumed value for the 

pre-infectious period increasing; clicking and dragging it to the left will result in the assumed 

value for the pre-infectious period decreasing.   

 

http://www.anintroductiontoinfectiousdiseasemodelling.com/
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The settings for the sliders can be changed by double clicking on the slider; if the sliders 

have been accidentally closed, they can be recovered by selecting the Parameters option 

from the main menu and selecting the “Show sliders” option.  

 

 

Left panel - equations 

The left panel holds the differential equations underlying the model.  Note that it is not 

possible to edit the equations or parameters in the Equations panel of the flowchart 

version of the model – any equations have to be edited either in the globals tab or in 

the equations in the flowchart itself (e.g. in the arrows). 

 

The relationship between the equations in the flow arrows and the differential equations in 

the book is as follows: 

 
 

where  

• S(t), E(t), I(t) and R(t) are the numbers of susceptible, pre-infectious, infectious and 

immune (recovered) individuals at time t 

• β is the rate at which two specific individuals come into effective contact per unit time 

(and equal to R0/(total population size × duration of infectiousness). 

• f is the rate at which pre-infectious individuals come infectious (equal to 1/average 

pre-infectious period) 

• r is the rate at which individuals recover from being infectious (and equal to 

1/infectious period). 

 

1.2.6 The equation editor panel (equation editor version only) 

The next page shows what you should see in the left panel of Bm_demo – equations.mmd.   

 

The first few lines of the panel provide details of the method used to convert the differential 

equations into difference equations (this is currently set to be “Runge-Kutta 4” or “RK4”), 

together with the time period over which the model is run and the size of time step used in 

the difference equations (set by STARTTIME, STOPTIME and DT – see section 1.2.7 on the 

“Parameters panel” for further details).  

 

This is usually followed by the differential equations for the model, the initial values for the 

compartments in the model and the values for the model’s input parameters. The latter are 

written in the same way that they are written in the globals tab of the flowchart version.   

 

=
dt

tdS )(

=
dt

tdE )(

=
dt

tdI )(

=
dt

tdR )(

new infections-

new infectious-

newly recovered-

newly recovered

new infections

new infectious

=S(t)I(t)

=fE(t)

=rI(t)

http://www.anintroductiontoinfectiousdiseasemodelling.com/
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As is the case for the globals tab in the flowchart model, comments can be included in curly 

brackets and anything on the same line after a semi-colon is ignored.  Therefore, any 

comment can be included on the same line as an equation, as long as it is preceded by a 

semi-colon. 

 
 

 

  

http://www.anintroductiontoinfectiousdiseasemodelling.com/
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1.2.7 The right-hand panel - Parameters  
 

The parameters panel shows the following: 

 

  

For most models, it includes the following: 

a) The method which Berkeley Madonna uses to convert the differential equations to 

difference equations and the adjustment made for errors in this conversion.  This is 

normally set to be “Runge-Kutta 4” which we will be using in most of the models.  For 

some exceptional models (see files for chapter 5), we use the “Euler” method using a 

small step size.  This method is equivalent to setting up the same difference 

equations in Excel. 

 

b) The time period over which the model makes predictions (specified by the values of 

STARTTIME and STOPTIME, which are set to be 0 and 10 by default).  Note that the 

units of the start and stop time are determined by those of the parameters used in the 

flow arrows or, equivalently, the differential equations. If these are in units of per day, 

then the start and stop times are also in daily units.  

 

c) The time step which Berkeley Madonna uses in solving the equations (specified by 

the value of DT which is set to be 0.02 time units by default).   

 

d) DTOUT, which specifies the number of output steps generated in each model run.  

The default (0) means that the output is generated for each time step i.e. every 0.02 

days if DT is set to be 0.02 days.   

 

e) The number of individuals present in various compartments at the start, if they are 

specified by a number rather than a parameter value (not applicable for the 

bm_demo model).  

 

f) The current values for all the parameters in the model, e.g. R0, the pre-infectious and 

infectious periods etc. 

 

The values for the input parameters can be changed in this panel by clicking on the 

parameter and typing in the new value in the white bar next to the reset button or by using 

http://www.anintroductiontoinfectiousdiseasemodelling.com/
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the sliders (see below).  Any parameter whose value has been changed either in the 

Parameters panel or in the sliders, and which therefore differs from the value in the globals 

tab or in the Equation panel has an asterisk to the left of its value in the parameter list.  The 

parameter can be reset to the value in the globals tab or in the equation panel by clicking on 

the parameter and then clicking on the reset button.  

 

Note that the value of the parameter that Berkeley Madonna uses to run the model is the 

value given in the Parameters panel and not the value in the globals tab or equation panel. 

 

 

1.2.8 Running the model  
The following lists some options that are available for running the model (whereby Berkeley 

Madonna uses the equations to generate predictions): 

1. Click on the Run button in the Parameters panel. 

2. Click on the Run button in the Graph tab in the middle panel. 

3. Select the Model option from the main menu and select the run option. 

4. Select the Compute option from the main menu and select the run option. 

5. Move the slider for a given parameter to the desired position (see section 

1.2.5). 

 

Any graphs in the middle panel are updated each time that the model is run. 

 

When you run the model, Berkeley Madonna may come up with a prompt saying that 

existing runs will be discarded if the model is recompiled (or a related message about 

recompiling).  You should click on OK (or Yes, if appropriate) to continue.  

 

 

1.2.9 Viewing the results of model runs – the Graph tab 

 

Overview of the layout 

The following shows what you will see in the graph tab when you run either the flowchart or 

equation editor version of “Bm_demo.mmd” (assuming that you have not changed any 

values for the input parameters).  

 

http://www.anintroductiontoinfectiousdiseasemodelling.com/
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The buttons along the top of the graph panel allow you to change the display (see Table 1 

on page 17 for the definitions of these buttons).   

 

At present, the graph panel in the file Bm_demo.mmd plots the number of susceptible 

people and the number of new infectious people per day.  

 

NB Please avoid clicking on the X button  on the left of the graph tab!  Clicking on 

this button will result in the figure being deleted and once this happens, the figure 

cannot be recovered (unless you have a previous version of the model with the 

figures set up). 

 

 

 

 

Changing the variable plotted 

The graph tab includes buttons at the bottom for variables that can be added to the plot.  If a 

variable is already included in the plot, clicking on the button for that variable will remove the 

variable from that plot.  If a variable is not already plotted, clicking on the button for that 

variable will result in that variable being added to the plot.   

For example, to add a plot of the number of immune individuals and new infections over 

time, click on the “Immune” and “new infns” buttons.  By default, time (t) is plotted on the x-

axis.  At this stage, your figure should resemble the following: 

 

http://www.anintroductiontoinfectiousdiseasemodelling.com/
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It is possible to add buttons for variables that are not listed at the bottom of the panel.  To do 

this, double click in the middle of the figures.  This will open up a new window called 

“Choose variables”.  Double clicking on the variable of interest in the left hand side of this 

window will add that variable to the list under the “Y Axes” section on the right hand side of 

window.  This section lists the components for which buttons will be set up at the bottom of 

the Figures panel.  Clicking on OK will result in the button for that variable appearing at the 

bottom of the window; subsequently re-run the model will add the variable to the plot. 

 

 
Changing the axis on which a variable is plotted 

In the above plot, the number 

of new infections and the 

number of new infectious 

people per unit time are 

plotted on the right hand y-

axis.  To change the plot so 

that the number of new 

infections per unit time 

appears on the left-hand y-

axis, double click in the 

middle of the figure, select 

new infns from the list (called 

Y-axes) on the right-hand 

side of the window, uncheck 

the box next to the Right Axes, and click on OK.   

 

http://www.anintroductiontoinfectiousdiseasemodelling.com/
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Changing the scales on the x- or y-axis  

The scale on the x-or y-axis can be changed by double clicking on one of the axes.   In the 

window which then appears, click on the “Scales” tab, deselect the auto button for the axis 

that you’re interested in and change the minimum and maximum values. The value of #Div 

specifies how many gridlines are provided for the given axis. 

 

 

Comparing the output obtained using different sets of assumptions 

It is possible to compare the results from different runs of the model by clicking on the 

overlay button  and then running the model for the assumptions of interest.  Multiple 

lines will then appear in the figure, one for each assumption (see below).   

 

Clicking on the overlay button again and then running the model again will remove all the 

results from previous runs from the plot.  

 

 

Parameter plot 

It is possible to produce a plot which shows how some outcome varies for different values of 

a given parameter.  For example, suppose we wanted to explore how the size of the peak 

number of infectious persons during an epidemic varies according to the size of R0.  To do 

this, we would need to follow the steps below using our bm_demo model: 

 

1. Select the Parameter plot option from the Parameters option in the main menu.  This 

will open a Parameter plot window.  : 

2. Select R0 from the drop-down box in the Parameter options in this window. 

3. Select number of runs to be 20, with the initial value of 1 and the final value to be 20.  

This specifies the number of values for R0 that you will explore and the range in 

which they lie. 

4. Double click on “new infectious” from the list under the “Variables” section.  This adds 

it to the list under the “Y-axis” section. 

5. Click on the box to the left hand size of the “Maximum” option to specify that you’re 

interested in the maximum number of new infectious persons seen during an 

epidemic predicted for an infection with a given value for R0.  

6. Click on Run to run the model.  

 

 

 

 

 

 

  

http://www.anintroductiontoinfectiousdiseasemodelling.com/
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Table 1: Summary of the buttons which are available on the graphical toolbar: 

 Definition Description 

 
Run Runs the model. 

 
Lock Locks the current page of figures: the figures will remain 

unchanged if you re-run your model with other parameter 

values. 

 
Overlay 

plots 

If this button is pressed down, then the results of further runs of 

your model will be added to the current figure.  

 
Table Presents the values for the series being plotted.  To export 

these values e.g. to Excel, click on the “Save Table as” option 

from the File option on the main menu.  You can then import the 

resulting file into Excel or other programs. 

 
Fast 

Fourier 

transform 

Carries out a Fast Fourier transform of the model output – 

consult the manual for Berkeley Madonna for further details. 

 
Legend Adds the legend to the figure. 

 
Parameters Adds the parameter values to the figure. 

 
Line 

appearance 

Changes the types of lines used in the plots and provides 

options for changing the colour scheme.  

 
Grid Adds gridlines to the figure. 

 
Readout 

When this is pressed, a cross in a circle  appears in the 

Figure when you click anywhere on the Figure; the co-ordinates 

of this cross are shown below the figure.  Clicking anywhere in 

the window will move this cross to that location.   

 
Zoom out Note that you can zoom in on a portion of the graph by clicking 

with the left mouse button anywhere on the graph when the 

pointer is a white arrow and, holding the left mouse button 

down, dragging across to the point that you’re interested in.  

Clicking on the zoom out button will return the view of the figure 

to normal. 

 
Notes Allows you to add notes or comments to the figure. 

 
Histogram Clicking on this button result in a histogram appearing for one 

the series being plotted on the current graph 

  

http://www.anintroductiontoinfectiousdiseasemodelling.com/
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1.3 Possible problems when running models  

Floating point error 

Once this error comes up, Berkeley Madonna usually asks whether you would like reduce 

DT and start again.  You should always decline this offer and then identify the source 

of the problem.  Otherwise Berkeley Madonna will reduce the size of the time step used to 

solve the differential equations until it can run it, and this will increase the run time, without 

necessarily solving the problem. For models which include a β parameter, this error can 

result from the β parameter being too large (i.e. you may be using an inappropriate value for 

β).  An alternative source of the problem may be that the value of some parameter equals 

zero and Berkeley Madonna is trying to divide by this parameter. 

 

Matrix reserve error 

This kind of error usually comes up when you’re trying to run a model and you’ve generated 

several figures.  The reason behind it is that each time that you run your model, Berkeley 

Madonna tries to store the values for all the variables (over time) included in the buttons at 

the bottom of each page of figures.  If you have many figures and many buttons, then the 

package is unable to store the values for all the variables and says that it has a Matrix 

reserve problem.  To solve the problem, delete any unnecessary figures (by clicking on the 

“x” button on the toolbar of the figures page), and delete the buttons for any variables that 

you’re not interested in.   To do the latter, double click in the middle of the figure, and double 

click on the corresponding variable listed on the right hand side of the “Choose variables” 

window.  This will remove the button for that variable.  You should find that your model will 

run once sufficient buttons and figures have been deleted.  

 

An error come up mentioning a compilation error 

This error usually results from an error in the code.  Berkeley Madonna typically highlights 

the point in the Equations panel at which it was unable to continue compiling.  The error is 

likely to be somewhere on the lines before that point and may be due to something simple 

like a typing error, an error with brackets, etc. 

 

The model fails to run 

This can also be due to memory problems.  You can reduce memory problems by deleting 

graphs and increasing the size of DTOUT, for example to 1, 5, 10 or higher values. 

 

 

Changes to parameters do not seem to affect the output 

Note that the parameter values which Berkeley Madonna uses when running the 

model are those given in the Parameter panel or in the Sliders.  Changes to the 

parameters made in the sliders will be reflected in the parameter panel.  However, changes 

made to the values of the parameters (and sometimes the equations) in either the 

globals tab or the equation editor are sometimes not recognized unless you first 

recompile the model.  To do this, click on the model option in the main menu, and 

choose the compile option.  

http://www.anintroductiontoinfectiousdiseasemodelling.com/
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Chapter 2  

How are models set up? I. An 
introduction to difference equations 
 

2.1 Model 2.1 

2.1.1 Overview of the model 

 

This model, set up using difference equations in Excel, describes the course of an influenza 

epidemic in a closed population, and can be used to reproduce Figure 2.8 in the book. 

 

The key features of the model are: 

• One infectious person is introduced into a population where all other 99,999 persons 

are susceptible. 

• There are no births into or deaths out of the population.   

• The parameters are currently set to be those for influenza (R0=2, average pre-

infectious period=average infectious period=2 days). 

 

The layout of the spreadsheet is as follows: 

1. Yellow cells (cells A12:I21).  The cells in column F hold the values for the key input 

parameters in the model.  These include the size of the time step used in the 

difference equations (see below) in cell F15, the total population size (cell F16), 

average pre-infectious and infectious periods (cells F17 and F18 respectively) and 

the basic reproduction number (R0) (cell F19).   

 

Notice that the cells have been assigned the names provided in column G.  

Therefore, if any cell has an equation which uses this cell, the name rather than the 

cell location can be used.  For example, cell F16 has been assigned the name 

“tot_popn”, and so the term “tot_popn”, rather than the location of the cell, can be 

used in any equation (see, for example, the equation in cell F22). 

 

2. Turquoise cells (cells A22:I27).  The cells in column F hold the values for β (cell 

F22), the average rate of onset of infectiousness (cell F23), and the average 

recovery rate (F24).  These are calculated using the values in the yellow cells and 

equations 2.11 and 2.16 in the book. 

 

3. Lilac cells (row 52 onwards).  These hold equations for the number of susceptible, 

pre-infectious, infectious and immune individuals on a given day, expressed in terms 

of the number on the preceding day.  These equations are the Excel equivalent of 

equations 2.1, 2.2, 2.3 and 2.4 in the book. 
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4. Figure 1.  This shows a plot of the number of susceptible and immune individuals 

over time, together with the number of new infectious persons per time step (this is 

identical to Figure 2.8 in the book).  

 

 

2.1.2 Suggested exercises 

 

1. a) How do you think the population size in this model changes over time?  Check your 

answer by setting up a suitable expression in the lilac cells of column I which sum up 

the numbers of individuals in each compartment at each time point. 

 

    b) How do you think predictions of the number of new infections per day should differ from 

the number of new infectious persons per day?  Check your answer by setting up an 

appropriate expression in cell F56 and copying it down until the 200th day.  A line 

showing the number of new infections per day should now appear in Figure 1.  

 

   c) How should the plot of the number of new infectious persons per day differ from that of 

the number of infectious persons?  Check your hypothesis by adding a line for the 

number of infectious persons (given by the values of the lilac cells in column D) to 

Figure 1.  

 

2.  a) How should model predictions of the number of new infectious persons per day and 

the number of immune individuals at the end of the epidemic change if you were to use 

an SIR model, rather than an SEIR model to describe the transmission of influenza?   

 

    b) Check your answer by following the steps below: 

i) Select columns J and U together, clicking with the right mouse button, selecting the 

unhide option. You should now see Figure 2, which shows the number of immune 

and new infectious persons per day which are also shown in Figure 1, and some 

blank lilac cells.  

ii) Set up appropriate expressions for the number of susceptible, infectious, immune 

individuals and the number of new infectious persons on day 1 in cells L56, M56, 

N56 and O56 respectively, and copy them down until the 200th day.  Figure 2 should 

now contain a plot comparing predictions from the SEIR and SIR models. 
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Chapter 3  

How are models set up? II. An 
introduction to differential equations 
 

3.1 Model 3.1 

3.1.1 Overview of the model 

 

This model, set up using difference equations in Excel, describes the course of a measles 

and influenza epidemic in a closed population, and can be used to see the patterns shown in 

Figure 3.2 in the book.  It comprises two worksheets (influenza and measles) and the layout 

of each sheet is very similar to that in the worksheet in model 2.1. 

 

The key features of the model are: 

• One infectious person is introduced into a population where all other 99,999 persons 

are susceptible. 

• There are no births or deaths into or out of the population.   

• The parameters in the influenza worksheet are currently set to be the following: R0=2, 

average pre-infectious period=average infectious period=2 days.  Those in the 

measles worksheet are as follows: R0=13, average pre-infectious period=8 days, 

average infectious period=7 days.   

 

The layout of the spreadsheet is as follows: 

1. Yellow cells (cells A12:I21).  The cells in column F hold the values for the key input 

parameters in the model.  These include the size of the time step used in the 

difference equations (see below) in cell F15, the total population size (cell F16), 

average pre-infectious and infectious periods (cells F17 and F18 respectively) and 

the basic reproduction number (R0) (cell F19).   

 

Notice that the cells have been assigned the names provided in column G.  

Therefore, if any cell has an equation which uses this cell, the name rather than the 

cell location can be used.  For example, cell F16 has been assigned the name 

“tot_popn”, and so the term “tot_popn”, rather than the location of the cell, can be 

used in any equation (see, for example, the equation in cell F22). 

 

2. Turquoise cells (cells A22:I27).  The cells in column F hold the values for β (cell 

F22), the average rate of onset of infectiousness (cell F23), and the average 

recovery rate (F24).  These are calculated using the values in the yellow cells and 

equations 2.11 and 2.16 in the book. 
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3. Lilac cells (row 52 onwards).  These hold equations for the number of susceptible, 

pre-infectious, infectious and immune individuals on a given day, expressed in terms 

of the number on the preceding day.  These equations are the Excel equivalent of 

equations 2.1, 2.2, 2.3 and 2.4 in the book. 

 

4. Figure:  This shows a plot of the number of infectious persons over time.  

 

3.1.2 Suggested exercises 

 

1. a) Considering the influenza model, change the size of the time step to be 0.05, 0.1, 0.5, 1 

and 2 days to check that you obtain the same patterns in the number of infectious 

persons over time that are seen in Figure 3.2.   

 

   b) How do you think your predictions will change if you reduce the size of the time step 

further to 0.01 days?   

 

   c) How might predictions of the epidemic size (as reflected in the number of individuals 

that are immune at the end of the epidemic) change as the time step size changes?  

Check your hypothesis using the model. 

 

    d) Repeat questions a) - c) using the measles model.  
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3.2 Model 3.2 

3.2.1 Overview of the model 
 

This model, set up in Excel, describes the transmission dynamics of measles over the 

course of about 100 years in a population comprising 100,000 persons, incorporating births 

into and deaths out of the population.  The layout of the spreadsheet is very similar to that in 

model 2.1. 

 

The key features of the model are: 

• One infectious person is introduced into a population where all other 99,999 

individuals are susceptible. 

• All individuals are born susceptible. 

• Susceptible, pre-infectious, infectious and immune individuals are assumed to 

experience the same death rate. 

• The infection-related parameters in the spreadsheet are currently set to be those for 

measles: R0=13, average pre-infectious period=8 days, average infectious period=7 

days.  The demographic parameters are: average life expectancy= 70 years, average 

per capita mortality rate = average per capita birth rate = 3.9×10-5 per person per 

day.   

• The equations in the model are the Excel equivalent of those obtained in Exercise 

2.2a in the book.  

 

The layout of the spreadsheet is as follows: 

1. Yellow cells (cells A12:I21).  The cells in column F hold the values for the key input 

parameters in the model.  These include the size of the time step used in the 

difference equations (see below) in cell F15, the total population size (cell F16), 

average pre-infectious and infectious periods (cells F17 and F18 respectively), the 

basic reproduction number (R0) (cell F19), and the life expectancy (cell F20).   

 

Notice that the cells have been assigned the names provided in column G.  

Therefore, if any cell has an equation which uses this cell, the name rather than the 

cell location can be used.  For example, cell F16 has been assigned the name 

“tot_popn”, and so the term “tot_popn”, rather than the location of the cell, can be 

used in any equation (see, for example, the equation in cell F22). 

 

2. Turquoise cells (cells A22:I27).  The cells in column F hold the values for β (cell 

F22), the average rate of onset of infectiousness (cell F23), the average recovery 

rate (F24), the average per capita mortality and birth rates (cells F25 and F26 

respectively) and the average numbers of births per time step (cell F27).  These are 

calculated using the values in the yellow cells and equations 2.11 and 2.16 in the 

book. 

 

3. Lilac cells (row 52 onwards).  These hold equations for the number of susceptible, 

pre-infectious, infectious and immune individuals on a given day, expressed in terms 

of the number on the preceding day.  These equations are the Excel equivalent of 

those obtained in Exercise 2.2a in the book 
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4. Figure.  This shows a plot of the number of susceptible, immune and new infectious 

persons per time step over time.  This shows that these statistics cycle over time – 

these patterns are discussed in detail in chapter 4. 

 

 

3.2.2 Suggested exercises 

 

1. How should the total population size change over time in this model?  Check your 

hypothesis by setting up a suitable expression in cell I55 for the total number of 

individuals in the population and copying it down until the final time step. 

 

2. Change the infection parameters in the model to be those for rubella in a low transmission 

setting (R0=7, average pre-infectious period = 10 days, average infectious period = 11 

days).  

 

a) How do the cycles in rubella incidence compare against those predicted for measles?  

Suggest possible explanations for the differences in the cycles in the two infections. 

 

b) Suppose you would like to explore the impact of different interventions that are 

introduced once the incidence of rubella has reached equilibrium.  Suggest possible 

ways of speeding up how quickly the model reaches equilibrium.  
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Chapter 4 

What do models tell us about the 
dynamics of infections? 

 

4.1 Models 4.1 and 4.1a 

4.1.1 Overview of Model 4.1 
 

This model, set up in Berkeley Madonna, describes the transmission dynamics of measles in 

a closed population following the introduction of an infectious person.  It can be used to see 

the plots in Figures 4.3, 4.4, 4.5, 4.6 and 4.13 of the book.   

 

The key features of the model are described below, where the sections mentioned can be 

found in the globals tab of the flowchart version, or in the equation panel of the equation 

editor version of the model: 

 

1. One infectious person is introduced into a population in which a proportion of the 

individuals is immune (see the section called “INITIAL VALUES”).  This proportion is 

specified by the value of prop_immune_0, which is defined in the section called 

TRANSMISSION AND INFECTION-RELATED PARAMETERS. 

 

2. The parameters are currently set to be those for measles (R0=13, average pre-

infectious period=8 days, average infectious period=7 days) - see the section called 

“TRANSMISSION AND INFECTION-RELATED PARAMETERS”. 

 

3. The population size remains stable over time, with 100,000 individuals and no births 

or deaths.   For further details, see the section called “DEMOGRAPHY-RELATED 

PARAMETERS”.  You can check this by plotting the value for sum_pop over time 

(defined in the USEFUL STATISTICS section). 

 

4. The variable “Cum infectious” stores the cumulative number of infectious persons 

over time.  Notice the way that this is set up in the flowchart version of the model.  

For example, the equation in the arrow which goes into the “Cum infectious” 

compartment is set up so that it equals whatever is in the “new infectious” arrow, 

thereby keeping track of the total number of individuals who become infectious over 

time.  
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5. Several useful statistics have been set up in the “USEFUL STATISTICS” section, 

such as the proportion of the population that is susceptible or immune.  For simplicity, 

the latter has been defined simply as 1-proportion susceptible. 

 

The panel with the figures includes 5 graphs: 

Graph 1: This plots the proportion of the population that is susceptible, immune, Rn  

(left hand axis) and the number of new infectious persons per day over time 

(right-hand axis).  This can be used to reproduce Figures 4.3 and 4.4 in the 

book.  

Graph 2: This is similar to Graph 1, except that the scale has been changed on the 

left axis to go from 0 to 12.   This can be used to reproduce the figure for 

measles in Figures 4.3b in the book. 

Graph 3: This plots the number of new infectious persons per day over time on a 

natural log scale.  This can be used to reproduce Figure 4.5 in the book.  

Graph 4: This plots the natural logs of the number of new infectious persons per day, 

the number of infectious persons and the cumulative numbers of infectious 

persons over time.  This can be used to reproduce Figures 4.6 in the book. 

Graph 5: This plots the proportion immune (left axis) and number of new infectious 

persons per day (right axis) over a period of 2000 days.  This can be used to 

reproduce Figure 4.13 in the book.  

 

 

4.1.2 Overview of Model 4.1a 

 

For reference, Model 4.1 has also been set up using difference equations in Excel - see 

Model 4.1a.xlsx.  The layout is very similar to that for model 3.1 except for the following: 

1. It includes an additional parameter prop_immune_0 (see cell F20), which reflects 

the proportion of the population that is immune at the start. 

2. The lilac cells in row 52 onwards of Column H hold equations for the cumulative 

numbers of infectious persons. 

3. The lilac cells in row 52 onwards of Columns K, L and M hold equations for the 

proportion susceptible, immune and the net reproduction number. 

4. Figures 1-3 are similar to Figures 4.3-4.5 of the book. 

5. Clicking on the  button above column Z will reveal a plot resembling Figure 4.6 

in the book, together with some lilac cells in row 52 onwards.  These lilac cells 

hold equations for the natural logs of the number of new infectious persons per 

day, the number of infectious persons and the cumulative numbers of infectious 

persons.   

6. Clicking on the  button above column AL will reveal a plot which shows the 

patterns in Figure 4.13 in the book, for a given infection. 

 

4.1.3 Suggested exercises 

1. Run Model 4.1 and check that it reproduces the patterns for measles shown in Figures 

4.3, 4.4, 4.5, 4.6 and 4.13 of the book.  

 

2. Repeat question 1 using the parameters for influenza (R0=2, average pre-infectious 

period =average infectious period = 2 days). 
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3. The following table summarizes the values of the parameters used to produce the plots 

for the infections in Figure 4.13.  Run the model using these values to check that they 

lead to plots consistent with those in Figure 4.13. 

 

Infection R0 Pre-infectious 

period (days) 

Infectious period 

(days) 

Measles 13 8 7 

Influenza 2 2 2 

Rubella 7 10 11 

Polio 7 7 30 

Smallpox 4 14 21 

 

4.  Carry out a parameter plot (see page 16) to see how the epidemic size (as implied by the 

proportion of individuals that are immune at the end) varies according to the size of R0.  You 

should produce a figure which is similar to that on Figure 4.12 in the book.  
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4.2 Model 4.2 

4.2.1 Overview of the model 
 

This model, set up using difference equations in Excel, describes the course of an influenza 

epidemic in a closed population.  It can be used to reproduce Figure 4.15 in the book and to 

estimate unknown parameters, such as the basic reproduction number, the initial number of 

infectious persons and the proportion of infectious persons who had sufficient clinical 

symptoms for them to be reported as cases.  It comprises one worksheet whose layout is 

very similar to that in the worksheet in model 2.1. 

 

The key features of the model are: 

• Infectious persons are introduced into a population where 30% of the 5234 persons 

are immune. 

• There are no births or deaths into or out of the population.   

• The average pre-infectious period is assumed to equal the average infectious 

period=2 days.   

 

The layout of the spreadsheet is as follows: 

1. Yellow cells (cells A12:I23).  The cells in column F hold the values for the key input 

parameters in the model.  These include the following: 

• the size of the time step used in the difference equations (cell F15); 

• the total population size (cell F16); 

• average pre-infectious and infectious periods (cells F17 and F18 

respectively); 

• the basic reproduction number (R0) (cell F19); 

• the proportion of the population that is immune at the start (cell F20); 

• the proportion of those infectious persons who are reported as cases (cell 

F21), and 

• the number of infectious persons in the population at the start (cell F22). 

 

Notice that the cells have been assigned the names provided in column G.  

Therefore, if any cell has an equation which uses this cell, the name rather than the 

cell location can be used.  For example, cell F16 has been assigned the name 

“tot_popn”, and so the term “tot_popn”, rather than the location of the cell, can be 

used in any equation (see, for example, the equation in cell F24). 

 

2. Turquoise cells (cells A24:I26).  The cells in column F hold the values for β (cell 

F24), the average rate of onset of infectiousness (cell F25), and the average 

recovery rate (F26).  These are calculated using the values in the yellow cells and 

equations 2.11 and 2.16 in the book. 

 

3. Lilac cells (row 41 onwards).  Columns B-E hold equations for the number of 

susceptible, pre-infectious, infectious and immune individuals on a given day, 

expressed in terms of the number on the preceding day.  These equations are the 

Excel equivalent of equations 2.1, 2.2, 2.3 and 2.4 in the book.  Column F holds the 

number of new infectious persons per day; columns G and H hold the number of new 

cases reported per day and per week respectively.  
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4. Figure:  This shows a plot of the number of new infectious persons, together with the 

number of susceptible and immune persons over time.  

 

5.  buttons next to row 40 and above column Q.  If you click on these buttons, you 

will see the following: 

a) Orange cells (cells K41:M57) containing data on the number of cases reported 

each week in Cumberland, USA between August and December 1918.  These 

are identical to the data plotted in Figures 4.9a and 4.15 (dashed lines) in the 

book.  

 

b) Lilac cells (cells N41:N57) containing model predictions of the number of cases 

during the period spanned by the Cumberland data. These are calculated using 

Excel’s VLOOKUP function by referring to the contents of cells H44:H444. 

 

c) Grey cells which describe the goodness of fit of the model (based on the current 

values for the parameters).  The log-likelihood deviance of the model prediction 

from the dataset is provided in cell D28.  It is calculated using the contents of 

cells O41:O57 and P41:P57, which hold contributions to the deviance from each 

data point, based on the “saturated” and transmission models respectively.  See 

section 4.2.5 of the book and the references cited there for further details. 

 

d) A figure, which is similar to Figure 4.15 in the book, comparing model predictions 

of the number of cases occurring each week in Cumberland, 1918. 

 

4.2.2 Suggested exercises 
 

1. At present, the model assumes that R0=2.1, which is consistent with the value obtained 

using the size of the epidemic (see Example 4.2.4.1 on page 79 of the book).  

 

a) How might you need to change the value for R0 in the model if you wanted to 

improve the fit of model predictions to the data, without changing the values for any 

of the other parameters?  

 

b) Without changing any assumptions in the model, follow the steps in section 10.1.1 of 

this document to check your hypotheses by obtaining the best-fitting values for the 

basic reproduction number. 

 

c) What other parameters might you want to change in the model to further improve the 

fit of model predictions to the data? 

 

 

2.  a) Follow the steps in section 10.1.2 of this document to estimate the values for the R0, 

proportion of infectious persons that are reported and the initial numbers of infectious 

persons which lead to the best-fit to the data and check that these values are 

consistent with those presented in Example 4.2.5.1 on page 82 of the book.  

 

b) Follow the steps in section 10.1.5 of this document to calculate 95% confidence 

intervals on these estimates and check that the values are consistent with those 

presented in Example 4.2.5.1 on page 82 of the book 
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3.  a) How do you think the best-fitting values for the parameters obtained in question 2b) will 

change if we were to assume that the pre-infectious and infectious periods are both 

shorter (e.g. equal to 1.5 days) than currently assumed in the model,?  Test your 

hypotheses by changing the pre-infectious and infectious periods accordingly and 

refitting the model using the maxlhood03 macro (see section 10.1.5 of this 

document). 

 

b) How might the best-fitting estimates values for the parameters change if we were to 

assume that no one in the population was immune at the start?  Check your 

hypothesis by changing the value for the proportion immune at the start accordingly 

and refitting the model (after changing the values for the pre-infectious and infectious 

periods to both equal 2 days).  

 

4. The cases in the dataset from Cumberland were identified actively through house to 

house surveys.  If the study identified 90% of symptomatic persons in population, what 

proportion of infectious persons would have been symptomatic in the population? 
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4.3 Models 4.3 and 4.3a 

4.3.1 Overview of Model 4.3 
 

This model, set up in Berkeley Madonna, describes the long-term dynamics of measles, 

taking account of births into and deaths out of the population, as described in Panel 4.3 of 

the book.  It can be used to see the plots in Figures 4.17 and 4.19 of the book. 

 

The key features of the model are described below, where the sections mentioned can be 

found in the globals tab of the flowchart version, or in the equation panel of the equation 

editor version of the model: 

 

1. One infectious person is introduced into a population where all other 99,999 

individuals are susceptible (see the section called “INITIAL VALUES”). 

 

2. The parameters are currently set to be those for measles (R0=13, average pre-

infectious period=8 days, average infectious period=7 days) - see the section called 

“TRANSMISSION AND INFECTION-RELATED PARAMETERS”. 

 

3. Individuals die at a constant rate, which is equal to 1/(average life expectancy), where 

the average life expectancy is 70 years.  For further details, see the section called 

“DEMOGRAPHY-RELATED PARAMETERS” and the equations for the numbers of 

deaths per unit time from each compartment. 

 

4. All newborns enter the susceptible compartment at a rate which equals the mortality 

rate. For further details, see the section called “DEMOGRAPHY-RELATED 

PARAMETERS” and the equation for “new births”. 

 

5. The population size remains stable over time, with 100,000 individuals, with the per 

capita birth rate equal to the per capita mortality rate (so that the numbers of births 

equals the numbers of deaths per unit time).  You can check this by plotting the value 

for sum_pop over time (see Graph 5 of the Figures panel). 

 

6. Several useful statistics have been set up in the “USEFUL STATISTICS” section, 

such as the proportion of the population that is susceptible or immune.  For simplicity, 

the latter has been defined simply as 1-proportion susceptible. 

 

 

The panel with the figures includes 5 graphs: 

Graph 1: This plots the number of new infectious persons per day over 25500 days 

after the start, producing a plot that is similar to Figure 4.17 in the book. 

Graph 2: This compares the net reproduction number (left-hand axis) against the 

number of new infectious persons per 100,000 population (right hand axis) 

between the 40th and 50th years, reproducing a plot that is similar to Figure 

4.19a in the book. 

Graph 3: This compares the proportion of the population that is susceptible (left-

hand axis) against the number of new infectious persons per 100,000 

population (right hand axis) between the 40th and 50th years, reproducing 

plots that are similar to Figures 4.19b and 4.20 in the book.   
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Graph 4: This compares the proportion of the population that is immune (left-hand 

axis) against the number of new infectious persons per 100,000 population 

(right hand axis) between the 40th and 50th years, reproducing a plot that is 

similar to Figure 4.19c in the book. 

Graph 5: This plots the number of Susceptible, Pre-infectious, Infectious and 

Immune individuals, together with the value for sum_pop over time. 

 

You may notice that the plot of the number of new infectious persons does not cross the 

plots of the proportion susceptible, Rn and the proportion immune at exactly the same points 

that they do in the figures in the book.  The reason for this is that the plots in the book were 

generated in Excel using difference equations and a 1 day time step.  This is equivalent to 

using the Euler method with a value of DT of 1 day.  You will find that if you change the 

corresponding settings in the Parameters window of Model 4.3, you will see the same plot 

that is provided in the book. 

 

 

4.3.2 Overview of Model 4.3a 

 

For reference, Model 4.3 has also been set up using difference equations in Excel  - see 

Model 4.3a.xlsx.  The layout is very similar to that for model 3.2 except that it includes 

additional figures, corresponding to graphs 2-3 of the Figures panel in the Berkeley 

Madonna version of this model.  These figures are labelled Figures 1-3.  The equations 

which are used to calculate the proportion of the population that is susceptible or immune 

and the net reproduction number for these figures are in columns J-O. 

 

 

4.3.3 Suggested exercises 
 

1. Run model 4.3 and answer the following questions.  You may also want to check that you 

get consistent answers using Model 4.3a. 

     a) According to Graph 2 of the Figures panel, what is the size of the net reproduction 

number whilst the number of new infectious persons per day is:  

i) increasing?  

ii) decreasing?  

iii) at a peak or a trough? 

 

b) According to Graph 3 of the Figures panel, what proportion of the population is 

susceptible whilst the number of new infectious persons per day is: 

i) increasing?  

ii) decreasing?  

iii) at a peak or a trough? 

How do these values relate to the epidemic threshold, 1/R0? 

 

c) According to Graph 4 of the Figures panel, what proportion of the population is 

immune whilst the number of new infectious persons per day is: 

i) increasing?  

ii) decreasing?  

iii) at a peak or a trough? 
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How do your answers relate to the herd immunity threshold, 1-1/R0? 

 

2. Return to Graph 2 of the Figures panel and add the numbers of births per unit time (“new 

births”) to the plot.  What do you notice about the proportion of the population that is 

susceptible whilst the number of new infectious persons per day is  

i) above the numbers of births per day?  

ii) below the numbers of births per day? 

Is this what you would expect and why? 

 

3. a) The following table shows possible values for R0, the average pre-infectious and 

infectious periods for several infections.  For which infection would you expect the inter-

epidemic period to be:  

i) the shortest?  

ii) the longest? 

 

 Pre-infectious 

period (days)(D’) 

Infectious 

period (days) 

(D) 

 

R0 

Measles 8 7 12-18 

Varicella 14 7 3-17 

Smallpox 14 21 5-7 

Rubella  10 11 6-7 

 

b) Confirm your hypotheses by running the model, after changing parameter values 

accordingly.  Check that the cycles that are predicted are consistent with those 

presented in Figure 4.16 of the book and with the values predicted by equation 4.31 

in the book. 
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4.4 Model 4.4 

4.4.1 Overview 
 

This model, set up in Excel, describes the transmission of measles using the equations that 

are implicit in Hamer (1906) – see Panel 4.4.  It can be used to see the patterns shown in 

Figure 4.22 in the book.  It comprises one worksheet, whose layout is based on that in the 

worksheet in model 2.1. 

 

The layout of the spreadsheet is as follows: 

1. Yellow cells (cells A12:I20).  The cells in column F hold the values for the duration 

of the serial interval (cell F15), the number of weeks in the year (cell F16), the 

number of births per week (cell F17 respectively), the approximate number of cases 

at a peak (cell F18) and the number of susceptible individuals at a peak (cell F19).   

 

Notice that the cells have been assigned the names provided in column G.  

Therefore, if any cell has an equation which uses this cell, the name rather than the 

cell location can be used.  For example, cell F15 has been assigned the name 

“durn_serial_interval”, and so the term “durn_serial_interval”, rather than the location 

of the cell, can be used in any equation (see, for example, the equation in cell F21). 

 

2. Turquoise cells (cells A21:I26).  The parameters in column F are calculated using 

the key input parameters which are in the yellow cells.  These cells hold the time step 

size in years (cell F21), the number of births per serial interval (cell F22), and the 

value for k (cell F23), which is calculated using the expression k=1/S0 (the derivation 

is discussed in the suggested exercises below).  

 

3. Lilac cells (cells A53:E656).  These hold equations for the number of generations 

and years elapsed since the start (columns A and B respectively), and the number of 

susceptible individuals and cases at a given time (columns C and D respectively), 

expressed in terms of the number in the preceding generation.  These equations are 

the Excel equivalent of equations 4.28 and 4.29 in the book. 

 

4. Figure:  This shows a plot of the number of susceptible individuals and cases over 

time.  

 

5. Several useful statistics have been set up in the “USEFUL STATISTICS” section. 

 

4.4.2 Suggested exercises 
 

1. a) Check the figure in the spreadsheet to see that once the number of new cases in each 

generation exceeds the birth rate per serial interval, then the number of susceptible 

individuals is declining.  

 

b) What is the inter-epidemic period for measles predicted by this model? 

 

c) Use the equations Ct+1 = kStCt to obtain the result that k=1/S0, where S0 is the 

number of susceptible individuals at time t=0, which is taken to be at a point when 

the number of cases is at a peak. 
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d) Estimate the value for the basic reproduction number for measles in London during 

the 1900s, assuming that the population comprised about 2 million individuals at this 

time. 

 

e) According to this model, what would have been the inter-epidemic period for rubella 

in London during the early 20th century, if the serial interval was 3 weeks in the 

following circumstances: 

i) R0 was similar to that calculated for measles? 

ii) R0 was 10? 
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4.5 Model 4.5 

4.5.1 Overview of the model 
 

This model, set up in Berkeley Madonna, describes the long-term dynamics of measles, 

taking account of births into and deaths out of the population, as described in Panel 4.3.  It 

has been adapted to include changes in effective contact between individuals in the 

population (β) during the course of a year, as result of school holidays.  It can be used to see 

patterns similar to those shown in Figure 4.24 of the book. 

 

The key features of the model are described below, where the sections mentioned can be 

found in the globals tab of the flowchart version, or in the equation panel of the equation 

editor version: 

 

1. One infectious person is introduced into a population where all other 99,999 

individuals are susceptible (see the section called “INITIAL VALUES”). 

 

2. The average pre-infectious and infectious periods are currently set to be those for 

measles (8 and 7 days respectively) - see the section called “TRANSMISSION AND 

INFECTION-RELATED PARAMETERS”.  

 

3. R0 is given by the value of R0_holiday (currently equal to 3.5) during school holidays 

and equal the value specified by R0_term during term time.  The latter differs by a 

factor (specified by the parameter R0_term_hol_fact) from that during the holiday.  

See the section called “TRANSMISSION AND INFECTION-RELATED 

PARAMETERS” for further details and Graph 3 of the Figures panel. 

 

4. There are 4 school holidays during the year, of different durations - see the section 

called “SCHOOL-RELATED PARAMETERS” for further details.  This section also 

includes an indicator parameter, called “holiday”, which equals 1 if the day of the year 

falls during a holiday, and is 0 otherwise. 

 

5. Individuals die at a constant rate, which is equal to 1/(average life expectancy), 

where the average life expectancy is 70 years.  For further details, see the section 

called “DEMOGRAPHY-RELATED PARAMETERS” and the equations for the 

numbers of deaths per unit time from each compartment. 

 

6. The population size remains stable over time, with 100,000 individuals, with the per 

capita birth rate equal to the per capita mortality rate (so that the numbers of births 

equals the numbers of deaths per unit time).  You can check this by plotting the value 

for sum_pop over time. 

 

7. Several useful statistics have been set up in the “USEFUL STATISTICS” section. 

 

The Figures panel includes 3 graphs: 

 

Graph 1: This plots the number of new infectious persons per day from the start of 

the model run until 200 years thereafter. 
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Graph 2: This plots the number of new infectious persons per day from 100 years to 

200 years after the start of the model run.  This plot is similar to that in 

Figure 4.24b in the book.  Note that since the population comprises 100,000 

persons, the number of new infectious persons per day is identical to the 

number of new infectious persons per 100,000 per day (which is the statistic 

plotted in Figure 4.24b). 

Graph 3: This plots the value for R0 over the course of a year, together with the 

value for the average R0 and the value for the indicator “holiday”.  This plot 

is similar to Figure 4.24a in the book.  

 

4.5.2 Suggested exercises 

 

1. There are several combinations of values for R0 during the school term and holiday 

period which, using Model 4.5, eventually result in regular cycles in incidence occurring 

roughly every 2-3 years (at least within the first 200 years after the start of the model 

runs).   

a) Check this by running the model for the following values for R0_holiday and 

R0_term_hol_fact.  You will probably be able to identify several other combinations of 

values not listed here – for further reading, see Keeling MJ, Rohani P. (2008) 

Modeling infectious diseases in humans and animals. Princeton and Oxford: 

Princeton University Press. 

 

R0_holiday R0_term_hol_fact 

3.5 4.7, 4.9, 5, 5.5 

3.25 3.4, 3.5, 3.6, 3.7, 

4.97834462 (!) 

5.1, 5.2, 5.7 

7 2, 2.3, 2.5, 2.6,  

11 1.6-1.9 

 

To put these values into context, studies (including that by Fine and Clarkson (1982) 

- see Panel 4.23) have suggested that the contact parameter is 20-30% lower during 

holidays, as compared with that during term-time, which is equivalent to values of 

R0_term_hol_fact of 1.25-1.4. 

 

b) What do you conclude about the effect of school holidays on the cycles in measles 

incidence? 
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4.6 Model 4.6 

4.6.1 Overview of the model 
 

This model, set up in Berkeley Madonna, describes the long-term dynamics of measles 

taking account of births into and deaths out of the population, assuming that the population 

size increases over time, as described in Panel 4.3 of the book.  It is similar to model 4.3, 

which assumed that the population size remained unchanged over time. It can be used to 

produce the patterns in Figure 4.26a (the correct version (!) – see the erratum page on the 

website). 

 

The key features of the model are described below, where the sections mentioned can be 

found in the globals tab of the flowchart version, or in the equation panel of the equation 

editor version of the model: 

 

1. One infectious person is introduced into a population where all other 99,999 

individuals are susceptible (see the section called “INITIAL VALUES”). 

 

2. The parameters are currently set to be those for measles (R0=13, average pre-

infectious period=8 days, average infectious period=7 days) - see the section called 

“TRANSMISSION AND INFECTION-RELATED PARAMETERS”. 

 

3. The force of infection is calculated using the effective contact rate (calculated as 

R0/(duration of infectiousness)), the number of infectious persons and the population 

size, using equation 2.13 in Panel 2.5.  For further details, see the section called 

“TRANSMISSION AND INFECTION-RELATED PARAMETERS”. 

 

4. Individuals die at a constant rate, which is equal to 1/(average life expectancy), 

where the average life expectancy is 60 years.  For further details, see the section 

called “DEMOGRAPHY-RELATED PARAMETERS” and the equations for the 

numbers of deaths per unit time from each compartment. 

 

5. The population size is controlled by the number of newborns per unit time 

(new_births_pday), who are all assumed to be susceptible.  The latter is calculated 

using the daily per capita birth rate (“daily_pcapita_brate”), which, in turn, is 

calculated using the annual birth rate per 1000 population (“annual_brate_p1000”).  

The population size increases over time, with 100,000 individuals at the start 

(specified by total_popn0).  You can check this by plotting the value for sum_pop 

over time.  For further details, see the section called “DEMOGRAPHY-RELATED 

PARAMETERS”.   

 

6. Several useful statistics have been set up in the “USEFUL STATISTICS” section. 

 

 

There are 2 figures in this model: 

Graph 1: This plots the total population size (sum_pop) over time. 

Graph 2: This plots the number of new infectious persons per 100,000 population 

per day on the right y-axis and the daily force of infection, plotted on the left-

hand y-axis. 
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Note on the expression for the number of new infections in the flowchart 

You may notice that the flowchart for this model does not include an arc arrow between the 

Infectious category and the “new infections arrow”.  This is due to the facts that the number 

of new infections per unit time is expressed in terms of the force of infection and the number 

of susceptible persons, and a variable for the force of infection has been set up in the 

globals tab.  Note that any variable that is set up in the globals tab is available everywhere in 

the model diagram.    

 

 

4.6.2 Suggested exercises using model 4.6 

 

1.  a)  Referring to Graph 1 of the figures panel, run the model assuming an annual per 

capita birth rate of 40 per 1000 per year, read off the population size 100 years after 

the start, and use this value to calculate the annual growth rate in this population. 

 

b) Is this value consistent with what you would expect, based on the assumed values 

for the life expectancy and the annual per capita birth rate? 

 

c) Repeat your calculations assuming that the per capita birth rate is 15 and 25 per 

1000 per year. 

 

2. a)   How should increasing the birth rate in the population affect the cycles in incidence?   

 

b) Referring to Graph 2 of the Figures panel, check that predictions of the incidence of 

infectious persons per 100,000 population are consistent with those presented in 

Figure 4.26 of the book. 

 

3. a)  How do you think your predictions of the cycles in the number of new infectious 

persons per 100,000 per day would change if you were to assume that transmission 

was density-dependent (see discussion in Panel 2.5)?   

 

b) Check your hypothesis by changing the equation for the force of infection to be given 

by the equivalent of the equation βI(t), assuming that β is constant and is given by 

the equation ce/N(0), where ce is the effective contact rate and N(0) is the total 

population size at the start.   

Reminder: if you’re using the flowchart version of the model, the equation for the 

force of infection must be changed in the globals tab (accessed via the globals tab).  

If you’re using the equation editor version of the model, you can change the equation 

in the equation editor panel.  In both instances, you will need to run the model before 

you will see predictions! 
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4.7 Model 4.7 

4.7.1 Overview of the model 
 

This model describes the long-term dynamics of measles, set up in Berkeley Madonna, 

taking account of births into and deaths out of the population, as described in Panel 4.3 and 

adapted to include vaccination of newborns into the population.  It can be used to see the 

patterns shown in Figure 4.29b of the book. 

 

The key features of the model are described below, where the sections mentioned can be 

found in the globals tab of the flowchart version, or in the equation panel of the equation 

editor version of the model: 

 

1. One infectious person is introduced into a population where all other 99,999 

individuals are susceptible (see the section called “INITIAL VALUES”). 

 

2. The parameters are currently set to be those for measles (R0=13, average pre-

infectious period=8 days, average infectious period=7 days) - see the section called 

“TRANSMISSION AND INFECTION-RELATED PARAMETERS”. 

 

3. Vaccination of newborns is introduced 100 years after the start of simulations at an 

effective coverage specified by the values of prop_immunized and eff_vacc_cov.  

Note that the effective coverage is interpretable as the product of the vaccination 

coverage and the vaccine efficacy.  For further details, see the section called 

“VACCINATION-RELATED PARAMETERS”, the expressions for 

new_susceptible_births and new_immunized_births (Flowchart version only) or the 

equations panel. 

 

4. Individuals die at a constant rate, which is equal to 1/(average life expectancy), 

where the average life expectancy is 70 years.  For further details, see the section 

called “DEMOGRAPHY-RELATED PARAMETERS” and the equations for the 

numbers of deaths per unit time from each compartment. 

 

5. The population size remains stable over time, with 100,000 individuals, with the per 

capita birth rate equal to the per capita mortality rate (so that the numbers of births 

equals the numbers of deaths per unit time).  You can check this by plotting the value 

for sum_pop over time. 

 

7. Several useful statistics have been set up in the “USEFUL STATISTICS” section. 

 

The Figures panel includes 4 graphs: 

Graph 1: This plots the number of new infectious persons per day from the start of 

the model run until 100 years thereafter. 

Graph 2: This plots the number of new infectious persons per day from ten years 

before to 60 years after the introduction of vaccination of newborns.  This 

plot can be used to reproduce Figure 4.29b in the book.  Note that since the 

population comprises 100,000 persons, the number of new infectious 

persons per day is identical to the number of new infectious persons per 

100,000 per day (which is the statistic plotted in Figure 4.29b). 
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Graph 3: This plots the proportion of the population that is susceptible over time. 

Graph 4: This plots the daily force of infection over time. 

 

 

4.7.2 Suggested exercises 

 

1. a)  Run the model for different levels of effective vaccination coverage among newborns 

(by changing the value for eff_vacc_cov) and look at Graph 1 of the Figures panel to 

check that you see similar patterns in the number of new infectious persons per 

100,000 per day to those seen in Figure 4.29.   

 

b) Calculate the herd immunity threshold for this model and check that when the 

effective coverage is above this value in the model, transmission of measles stops. 

 

c) Repeat these steps for rubella and smallpox, using the values for the preinfectious 

and infectious periods given in question 3 in section 4.3 in this document, assuming 

values for R0 of 7 and 5 for these infections respectively.   

 

2. Change the natural history parameters to be those for measles and run the model for 

levels of effective vaccination coverage of below 92%, whilst looking at Graph 3 of the 

Figures panel.  What happens to the proportion of the population that is susceptible in 

the model as you change the effective vaccination coverage?  Is this what you expect 

and why?  

 

3. a)  Use the inter-epidemic period predicted by the model for levels of effective vaccination 

coverage among newborns of 50%, 80% and 90% to estimate the average age at 

infection .  Why should you be cautious about accepting these values? 

 

b) As discussed in chapter 5, if it is assumed that individuals mix randomly and that the 

mortality rate is identical for everyone in the population (as is the case in Model 4.7), 

the average age at infection, the force of infection and the average mortality rate (m) 

are related through the equation: 
mλ

A
+

=
1

.  Use this equation to calculate what the 

average force of infection should be in the population, following the introduction of 

vaccination at the levels of coverage specified in question 3a), and check that these 

values are consistent with those predicted by the model. 
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4.8 Models 4.8 and 4.8a 

4.8.1 Overview of model 4.8 
 

Model 4.8, set up in Berkeley Madonna, describes the long-term dynamics of a Susceptible-

Infectious-Susceptible infection, such as gonorrhoea, as used by Grassly et al (2005) – see 

section 4.4 in the book.  It can be used to see the plot in Figure 4.31a of the book.   

 

The key features of the model are described below, where the sections mentioned can be 

found in the globals tab of the flowchart version, or in the equation panel of the equation 

editor version of the model: 

 

1. One infectious person is introduced into a population where all other 99,999 

individuals are susceptible (see the section called “INITIAL VALUES”). 

 

2. The parameters are currently set to be those for gonorrhoea (R0=1.5, average 

infectious period=2 months) - see the section called “TRANSMISSION AND 

INFECTION-RELATED PARAMETERS”. 

 

3. Individuals become sexually active at a constant rate, which is assumed to equal the 

rate at which individuals stop being sexually active, calculated as 1/(average duration 

that individuals are sexually active).  The average number of years which individuals 

are sexually active is set to be 30 years.  For further details, see the section called 

“SEXUAL-BEHAVIOUR-RELATED PARAMETERS”. 

 

4. The population size remains stable over time, with 100,000 individuals.  You can 

check this by plotting the value for sum_pop over time. 

 

5. Several useful statistics have been set up in the “USEFUL STATISTICS” section. 

 

 

The panel with the figures includes 1 graph: 

Graph 1: This plots the number of new infections persons per month over 50 years 

after the start, reproducing Figure 4.31 in the book. 

 

4.8.2 Overview of model 4.8a 

 

Model 4.8a, set up in Berkeley Madonna, is identical to Model 4.8, except that it describes 

the long-term dynamics of a Susceptible-Infectious-Recovered-Susceptible infection, such 

as syphilis, as used by Grassly et al (2005) – see section 4.4 in the book.  It can be used to 

see the plot in Figure 4.31b of the book.   

 

The difference between this model and Model 4.8 is that infectious individuals recover to 

enter the recovered compartment, before returning to the susceptible compartment.  They 

stay in the recovered compartment for an average period that is specified by the parameter 

“durn_immty_years”.  
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4.8.3 Suggested exercises 
 

1.  Run Model 4.8a for different values for the duration of immunity and check that it 

produces patterns in the number of new infections which are similar to those shown in 

Figure 4.31b of the book.   

 

 

 

  

 

 

 

http://www.anintroductiontoinfectiousdiseasemodelling.com/


45 | AN INTRODUCTION TO INFECTIOUS DISEASE MODELLING – GUIDE TO THE ONLINE MATERIAL 
       CHAPTER 5: AGE PATTERNS 

 

 
 
Version 5, released 28/02/2021 
www.anintroductiontoinfectiousdiseasemodelling.com 

Chapter 5  

Age patterns 
 

5.1 Model 5.1 

5.1.1 Overview of the model 
 

This model, set up in Berkeley Madonna, contains a simple catalytic model based on Munch 

(1959), describing how the proportion of a cohort that is susceptible or who has ever been 

infected should change with increasing age, assuming that the force of infection is identical 

in each year of life. It can be used to reproduce the plot in Figure 5.3 in the book.   

 

The key features of the model are described below, where the sections mentioned can be 

found in the globals tab of the flowchart version, or in the equation panel of the equation 

editor version of the model: 

 

1. Everyone is susceptible at birth (see the section called “INITIAL VALUES”). 

 

2. The force of infection is currently set to be 10% per year and constant over time (see 

the section labelled INFECTION-RELATED PARAMETERS).  

 

The Figures panel has one graph, plotting the proportion of the cohort that is susceptible or 

has ever been infected, as the cohort ages.  Data on the age-specific proportion of 

individuals that had antibodies to mumps or rubella in England and Wales, presented in 

Farrington (1990) during the 1980s, that were plotted in Figure 5.1 in the book are also 

included.  These can be viewed by first clicking on Datasets tab in the Figures panel and 

ticking the “Plot points” box and then selecting the buttons #rub_ppos and #mumps_ppos at 

the bottom of Graph 1. 

 

5.1.2 Suggested exercises 

 

1. Run the model and check that the predicted proportion of the cohort that is 

susceptible or (ever) infected as the cohort ages is consistent with that shown in 

Figure 5.3 of the book, for different values of the force of infection.   

 

2. As discussed on page 108 of the book, the best-fitting values for the average force of 

infection for the rubella and mumps data that are obtained using this model are about 

12% and 20% per year respectively.  Check that these values lead to model 

predictions of the age-specific proportion ever infected that are compatible with the 

data.  
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5.2 Model 5.2 

5.2.1 Overview of the model 
 

This model shows how a simple catalytic model, based on Münch (1959) and as described 

in section 5.2.2 of the book, can be set up in Excel.  It can be used to see the patterns 

shown in Figure 5.4 of the book. 

 

The key features of the model are:  

• The force of infection is identical for all ages  

• All persons are susceptible to infection from birth.  

• The mortality rate is identical for susceptibles and those (ever) infected. 

 

The file comprises two sheets. Sheet “mumps” contains the mumps data presented in Figure 

5.1 and sheet “rubella” holds the rubella data, extracted from Farrington (1990).  The layout 

of both spreadsheets is identical and is as follows: 

 

1. Turquoise cells (rows 12-17)   Cell D14 holds the assumed value for the annual 

force of infection.   

 

Notice that cell D14 has been assigned the name specified in cell E14.  Therefore, if 

any cell has an equation which uses this cell, the name rather than the cell location 

can be used.  For example, cell D14 in sheet “mumps” has been assigned the name 

“foi_pyr_mumps”, and so the term “foi_pyr_mumps”, rather than the location of the 

cell, can be used in any equation (see, for example, the equation in cell F36).   

 

2. Yellow cells (cells A29:E79).  These hold data on the observed numbers of 

individuals that were positive, negative and the total number tested for antibodies in 

each age group in the given dataset.  

 

3. Pink cells (cells F29:G79).  Column F in this cell range holds expressions for the 

proportion of individuals of a given age that are susceptible (i.e. the Excel equivalent 

of equation 5.2 in the book, 
aλeas −=)( ).  Column G in this cell range holds 

expressions for the proportion who have ever been infected (i.e. the Excel equivalent 

of equation 5.3 in the book, )(1)( asaz −= ). 

 

4. Figure. This compares data on the observed proportion positive in the spreadsheet 

against model predictions of the age-specific proportion (ever) infected. 

 

5.2.2 Suggested exercises 

 

1. At present, the models assume that the force of infection is 21% and 11% per year for 

mumps and rubella respectively.  Do you think that the actual average force of infection 

for these infections was higher or lower than these values? 

 

2. Click on the  buttons next to row 19 and above column J.   
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You should see some grey cells which describe the goodness of fit of the model (based 

on the value for the force of infection in cell D14).  The log-likelihood deviance of the 

model prediction from the dataset is provided in cell D18.  It is calculated using the 

contents of cells H36:H79 and I36:I79, which hold contributions to the deviance from 

each data point, based on the catalytic model prediction and the “saturated” model 

respectively.  See section 4.2.5 of the book and the references cited there for further 

details. 

 

Without changing any assumptions in the model, follow the steps in section 10.1.1 of this 

document to obtain the best-fitting values for the force of mumps and rubella infection, 

and check whether they are consistent with the values presented on page 108 of the 

book. 

 

 

3. Follow the steps in section 10.1.3 of this document to calculate 95% confidence intervals 

on the estimates for the force of mumps and rubella infection, and check that they are 

consistent with the values presented on page 108 of the book. 

 

4. a) How do you think your estimates of the force of infection would change if you were to 

assume that the sensitivity of the antibody test is <100%?   

 

b) Test your hypotheses by refitting your model after changing your model to assume 

that i) 95% and ii) 80% of those who have ever experienced infection are 

serologically positive.  

 

c) Why might you be cautious about accepting the estimates obtained assuming a test 

sensitivity of 80%? 
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5.3 Model 5.3 

5.3.1 Overview of the model 
 

This model, set up in Excel, is a variant of the simple catalytic model and assumes that the 

force of infection is identical for all ages, but that individuals have some immunity during the 

first few months of life, as described in section 5.2.3.5.1 of the book.  It can be used to 

produce the patterns in Figure 5.9c in the book. 

 

The file comprises two spreadsheets.  The spreadsheet “fixed duration maternal immunity” 

assumes that everyone is immune for the first few months of life and is then susceptible to 

infection.  The worksheet “waning maternal immunity” assumes that maternal immunity 

wanes at a constant rate, depending on the assumed average duration of maternal 

immunity.  

 

The layout of each of the spreadsheets is similar to that for model 5.2.  The key features are 

as follows: 

 

1. Turquoise cells (rows 12-17)   

Sheet “fixed duration maternal immunity”: Cell D14 holds the current value for the 

annual force of infection, and has been assigned the name “foi_pyr_matfix”.  Cell 

D15 holds the assumed fixed duration of maternal immunity, which is currently set to 

be 0.5 years. 

Sheet “waning maternal immunity”: Cells D14, D15 and D16 hold the current value 

for the annual force of infection, the average duration of maternal immunity, and the 

average rate at which maternal immunity is lost.  These cells have been assigned the 

names “foi_pyr_matwane”, “durn_mat” and “mat_loss_rate” respectively. 

 

2. Yellow cells (cells A29:E79).  These contain data on the observed numbers of 

individuals that were positive, negative and the total number tested for rubella 

antibodies in the UK, extracted from Farrington (1990).  

 

3. Pink cells (cells F29:G79).  Column F in this cell range contains expressions for the 

proportion of individuals of a given age that is susceptible.  This expression is the 

Excel equivalent of 
)5.0()( −−= aλeas  and 

μλ

eeμ
as

aλaμ

−

−
=

−− )(
)(  for assumptions that 

maternal immunity last for 6 months for all individuals, or declines at a constant rate 

respectively (see page 118 of the book).  The cells in column G hold the Excel 

equivalent of 1-s(a).  In sheet “fixed duration maternal immunity”, this equation leads 

to the value for the proportion (ever infected) at a given age.  In sheet “waning 

maternal immunity”, the value obtained using this equation is interpretable as the 

proportion (ever infected) or with maternal immunity. 

 

4. Figure. This compares data on the observed proportion positive in the spreadsheet 

against model predictions. 
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5.3.2 Suggested exercises 
 

At present, the force of infection in both sheets is set to be 18% per year.   

 

1. Click on the  buttons next to row 19 and above column J.  You should see grey cells 

which are similar to those described for exercise 2 in section 5.2.2.  Follow the steps in 

section 10.1.1 of this document to check that the best-fitting values for the force of 

rubella infection are consistent with the values presented in Table 5.3 of the book. 

 

2. Follow the steps in 10.1.3 of this document to calculate 95% confidence intervals on the 

data and check that they are consistent with the values in Table 5.3 of the book. 

 

3. How should your estimates change if you were to assume that the duration of maternal 

immunity is shorter than 6 months?  Check your hypothesis by reducing the duration to 4 

months and re-fitting the model. 

 

4. Use the formula 
( )

μλ

μλ
a

−
=

/ln
min  (see exercise 5.6a in the book) to calculate the age at 

which the smallest proportion of individuals should be immune if the average duration of 

maternal immunity is fixed at 6 months, for values of the force of infection of 1%, 10%, 

15% and 20% per year.  Check that the values that you obtain are consistent with 

predictions from sheet “waning maternal immunity”. 
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5.4 Model 5.4 

5.4.1 Overview of the model 
 

This catalytic model, set up in Excel, assumes that the force of infection differs between the 

age groups <15 and ≥15 years and that individuals are susceptible from birth, as described 

in section 5.2.3.5.2 and Panel 5.2 of the book. 
 

The file consists of just one sheet, whose layout is similar to that for models 5.2 and 5.3.  

The key features are as follows: 

 

1. Turquoise cells (rows 12-17)  Cells D14 and D15 hold the current value for the 

annual force of infection for those aged <15 and ≥15 years, which have been 

assigned the names “foi_u15”, and “foi_g15” respectively.  Cell D16 holds the 

proportion of those aged 15 years who are susceptible (assigned the name 

prop_sus15). 

 

2. Yellow cells (cells A29:E79).  These contain data on the observed numbers of 

individuals that were positive, negative and the total number tested for rubella 

antibodies in different age groups in the UK, extracted from Farrington (1990).  

 

3. Pink cells (cells F29:G79).  Column F in this cell range contains expression for the 

proportion of individuals of a given age that is susceptible.  The expressions for the 

age groups 0-14 years are the Excel equivalent of equation 5.27a in the book; those 

for the age groups ≥15 years hold the Excel equivalent of equation 5.27b.  The cells 

in column G hold the Excel equivalent of 1-s(a).   

 

4. Figure. This compares data on the observed proportion positive in the spreadsheet 

against model predictions of the age-specific proportion (ever) infected or the 

proportion immune. 

 

5.4.2 Suggested exercises 

 

1. Click on the  buttons next to row 19 and above column J.  You should see grey cells 

which are similar to those described for exercise 2 in section 5.2.2.   

a) First follow the steps in section 10.1.2 of this document to check that the best-

fitting values for the force of rubella infection are consistent with the values 

presented on page 125 of the book (13% and 4% per year for 0-14 and ≥15 years 

respectively). 

b) Follow the steps in section 10.1.4 of this document to calculate 95% confidence 

limits on the estimates. 

 

2.  a) Rewrite equations 5.27a and 5.27b in the book to assume that individuals have 

maternal immunity for the first 6 months of life.  

 

2. Change the appropriate expressions in the spreadsheet to assume that individuals are 

immune during the first 6 months of life and re-fit the model.  How do assumptions about 

maternal immunity affect estimates of the force of infection among children and adults?  
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5.5 Model 5.5 

5.5.1 Overview of the model 
 

This model, set up in Berkeley Madonna, describes the transmission dynamics of rubella in 

an age-structured population (one with a “Realistic Age Structure”, using the approach of 

Schenzle (1984) - see Panel 5.4 of the book). It can be used to generate the estimates of the 

proportion of individuals that are susceptible and number of new infections per day at 

different ages that are shown in Figures 5.16 and 5.21 respectively in the book.  

 

The model has been set up in Berkeley Madonna’s equation editor only.  It can be set up 

using Berkeley Madonna’s flowchart editor, although the resulting model diagram would be 

very cumbersome.  

 

The key features of the model are as follows:  

• The population is stratified into annual age strata between the ages 0 and 70 years, 

with each age stratum moving to the subsequent age stratum at the end of each 

year, as shown in Figure O.5.1. 

• Vaccination of newborns is introduced in the year specified by year_start_vacc, with 

an effective coverage specified by eff_vcov_newborns. 

• The infection-related parameters are currently set to be those for rubella in a high 

incidence setting (average pre-infectious period=10 days, average infectious period= 

11 days, R0=12).  

 

Further technical details of the model are provided below.  Those readers who are mainly 

interested in the application of the model may wish to skip this section and go to the 

suggested exercises in section 5.5.3.  

 

 

5.5.2 Further details of the model 
 

The sections mentioned in the description below can be found in the equation panel.  To 

improve clarity, the section headings in this panel have been pasted into blue-green boxes 

which cannot be edited.  

 

Equations: 

1. The equations are written using difference equations (equivalent to the Euler method) 

– see the two sections labelled “DIFFERENCE EQUATIONS”. 

 

2. Since only newborns are vaccinated in the model (see below), the difference 

equations differ depending on whether they relate to the population aged ≥1 year or 

those in their first year of life.  

 

3. The population is stratified into annual cohorts, with the maximum age specified by 

the parameter “up_age” (currently set to 69 years – see the section labelled 

“DEMOGRAPHY-RELATED PARAMETERS).  This stratification is reflected in the 

notation used by Berkeley Madonna to write the equations for each age class.  For 

example, Sus[0] refers to those in their first year of life, Sus[1] refers to those aged 1 

years, Sus[2] refers to those aged 2 years etc. There are no equations for age strata 
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greater than 69 years (i.e. >up_age) since individuals leave the model on their 70th 

(up_age+1) birthday.   

 

Notice that the left hand side of the difference equations for the susceptible 

population is written Sus[up_age..1].  This notation simply reflects the fact that the 

equations for Sus[up_age] are evaluated first, followed by those for Sus[up_age-1] 

etc.  

 

4. The population in each age stratum moves into the subsequent age stratum at the 

end of each year, and therefore the difference equations used depend on whether or 

not it is the end of the year.  The latter is specified by the value of the variable 

year_end, which equals 1 if the end of the year has been reached and 0 otherwise 

(see the section on “TIME-KEEPING VARIABLES”).   

 

5. Newborns enter the population only at the end of year, at which time vaccination also 

occurs (see below). 

 

 
Figure O.5.1:  General structure of Model 5.5 

 

Demography: 

1. The population has a rectangular age distribution with 1000 persons in each age 

stratum and hence 70,000 individuals in the whole population (see Graphs 1 and 2 of 

the Figures panel and question 1 in the suggested exercises).  The variables 

…. …. …. ….

end of year

end of year

end of year

end of year

end of year

end of year

Susceptible[1] Pre-infectious [1] Infectious[1] Immune[1]

Susceptible[2] Pre-infectious[2] Infectious[2] Immune[2]

Susceptible[3] Pre-infectious[3] Infectious[3] Immune[3]

Infectious[69] Immune[69]Pre-infectious[69]Susceptible[69]

end of year
Susceptible

newborns

end of year

Immunized

newborns

Susceptible[0] Pre-infectious[0] Infectious[0] Immune[0]
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tot_pop[0], tot_pop[1], tot_pop[2] equal the total number of individuals who are in 

their first, second, third etc year of life in the model  (i.e. in the age stratum 0, 1, 2 

years etc).  Tot_pop[0], tot_pop[1] etc are defined in the “USEFUL SUMMARY 

STATISTICS” section.   

 

 

Transmission and infection: 

1. The infection-related parameters are currently set to be those for rubella in a high 

incidence setting (pre-infectious period=10 days, infectious period= 11 days, R0=12) - 

see the section called “TRANSMISSION AND INFECTION-RELATED 

PARAMETERS”.  

 

2. The force of infection in the population is defined in the section called 

“TRANSMISSION AND INFECTION-RELATED PARAMETERS” and is given by the 

expression: 

beta*ARRAYSUM(Infous[*])   

 

Here ARRAYSUM(Infous[*]) is the total number of infectious individuals in the 

population.  This is the notation that Berkeley Madonna uses to calculate the sum of 

all the age strata of the Infectious compartment, i.e. Infous[0]+Infous[1]+Infous[2]+ ..+ 

Infous[upage]. 

 

 

Vaccination: 

1. Vaccination of newborns is introduced some years after the start (specified by the 

value of year_start_vacc).  The proportion of newborns that is immunized each year 

is stored in the parameters prop_newborns_immunized and eff_vcov_newborns.  

Note that the effective coverage is interpretable as the product of the vaccination 

coverage and the vaccine efficacy.  For further details, see the section called 

“VACCINATION-RELATED PARAMETERS”. 

 

Unvaccinated newborns are added to the Sus[0] compartment at the end of each 

year; vaccinated newborns are added to the Imm[0] compartment at the end of each 

year (see the section called “DIFFERENCE EQUATIONS – PERSONS IN THEIR 

FIRST YEAR OF LIFE”.  

 

Miscellaneous: 

1. Several useful statistics have been set up in the “USEFUL STATISTICS” section, 

such as the proportion of 5, 10, 15 etc year olds who are susceptible, the daily 

numbers of new infections per 100,000 in various age groups. 

 

Figures: 

The Figures panel has 5 graphs: 

Graph 1: This plots the number of individuals in each age stratum over time. 

Graph 2: This plots the number of individuals in each age stratum at the end (with 

the age stratum on the x-axis). 

Graph 3: This plots the daily force of infection over time. 

Graph 4: This plots the proportion of the population that is susceptible in different 

age groups and overall over time and can be used to reproduce Figure 5.16 
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in the book (after including an appropriate level of vaccination coverage 

among newborns). 

Graph 5: This plots the daily number of new infections per 100,000 per day and can 

be used to reproduce Figure 5.21 in the book (after including an appropriate 

level of vaccination coverage among newborns). 

 

5.5.3 Suggested exercises 

 

Questions 2, 3a, and 3d are intended to improve understanding of the relationship between 

some of the equations in the book and the outputs in the model.  The equations provide a 

useful check to see that the model is behaving as it should, which is particularly helpful if you 

are developing your own models! 

 

Readers who are most interested in looking at the effect of vaccination among newborns on 

the proportion susceptible and the number of new infections in different age groups may 

want to focus on questions 1, 3b, 3c and 4. 

 

 

1. Run the model and click on Graphs 1 and 2 of the Figures panel to check that the 

population size remains unchanged over time and that the age distribution is rectangular.   

 

2. The model is currently set up so that R0=12 and no newborns are vaccinated.   

 

a) Use the equation R0=λL (equation 5.22 in the book) to calculate what you would 

expect the average force of infection to be in the population (before the introduction 

of vaccination), and check that it is consistent with that predicted by the model on 

Graph 3 of the Figures panel.  

 

b) Repeat part b) assuming that R0=7. 

 

c) Use your estimates of the average force of infection (calculated in part a)) to 

calculate the following, and check that the values you obtain are consistent with 

those shown on graphs 4 and 5 of the Figures panel: 

i. The average proportion of 20 year olds who should be susceptible (using 

equation 5.2 in the book). 

ii. The average overall proportion of the population that should be susceptible 

(using either equation 5.14 or 5.19 in the book). 

iii. The average number of new infections per 100,000 population among those 

aged 20 years (adapting equation 5.26). 

 

3. Run the model assuming that 50% of newborns are immunized once vaccination has 

been introduced, assuming that R0 =12. 

 

a) Read off the long-term average daily force of infection after the introduction of 

vaccination from Graph 3 of the Figures panel, and check that the values that you 

obtain lead to value of R0 which are consistent with the value predicted by equation 

5.28 in the book  (
)1)(1(

'
'0 Lλev

Lλ
R

−−−
= ). 
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b) Referring to graphs 4 and 5 of the Figures panel, check that predictions of the 

proportion susceptible and the daily number of new infections per 100,000 at different 

ages are consistent with those in Figures 5.16 and 5.21 in the book. 

 

c) Calculate the herd immunity threshold and run the model for different values for the 

effective vaccination coverage which are below or above the herd immunity 

threshold.  What happens to the long-term proportion susceptible at different ages as 

the effective vaccination coverage increases and why? 

 

d) Use equations 5.31 and 5.36 in the book to calculate the average proportion 

susceptible and the number of new infections per 100,000 per day among 20 year 

olds in the long-term after the introduction of vaccination among newborns, and 

check that these values are consistent with those shown in graphs 4 and 5 of the 

Figures panel.  

 

4. Patterns similar to those in Figures 5.14 and 5.22 in the book can be generated using a 

parameter plot in Berkeley Madonna.   

 

a) Check this by carrying out a parameter plot (see page 16 of this document) of the 

(final) long-term average force of infection and the (final) long-term average number 

of new infections per 100,000 per day among those aged 20, 30 and 40 years, 

against the effective vaccination coverage among newborns.   

Note: you may prefer to set the number of runs to be 11 in the Parameter plot 

window, with the effective coverage ranging between 0 and 1. 

 

b) In which setting should you be most cautious about introducing rubella vaccination 

among newborns? 
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5.6 Model 5.6 

5.6.1 Overview of the model 
 

This model, set up in Berkeley Madonna, is very similar to Model 5.5, except that it allows 

vaccination of any age group.  It is currently set up so that 13 year olds are vaccinated and 

can be used to reproduce Figure 5.23b in the book.   

 

The main differences between the equation panel of this model and that for model 5.5 are 

described below; the sections mentioned can be found in the equation panel: 

 

1. Vaccination begins some years after the start (specified by the value of 

year_start_vacc).  The proportion of individuals of age i that is immunized each year 

is stored in the parameter prop_immunized[i].  At present, only 13 year olds are 

vaccinated, at a level determined by eff_vcov_13 (see the section called 

“VACCINATION-RELATED PARAMETERS”.   

 

2. Vaccination occurs at the end of each year, when immunized individuals in the i-1th 

age stratum move into the ith age stratum (see the two sections on difference 

equations in the equations panel).   

 

The Figures panel includes the same 5 graphs that were in Model 5.5: 

Graph 1: This plots the number of individuals in each age stratum over time. 

Graph 2: This plots the number of individuals in each age stratum at the end (with 

the age stratum on the x-axis). 

Graph 3: This plots the daily force of infection over time. 

Graph 4: This plots the proportion of the population that is susceptible in different 

age groups and overall over time. 

Graph 5: This plots the daily number of new infections per 100,000 per day and can 

be used to reproduce Figure 5.21 in the book (after including an appropriate 

level of vaccination coverage among 13 year olds). 

 

5.6.2 Suggested exercises 

 

1.  a)  Run the model assuming that 100% of 13 year olds are immunized and that R0= 7 and 

read off the value for the long-term average force of infection.  Check that the value 

for R0 that you obtain after substituting this value into equation 5.37 in the book is 

consistent with that assumed in the model. 

 

b) Check that predictions of the number of new infections per 100,000 population shown 

on Graph 5 of the Figures panel are consistent with those in Figure 5.23b.   

 

c) According to graphs 4 and 5 of the Figures panel, how does immunization of 100% of 

13 year olds influence the following and why: 

i. The proportion of children and adults that is susceptible? 

ii. The number of new infections per 100,000 population in different age groups? 

 

d) Use the force of infection read off in part a) to calculate the reduction in the long-term 

average force of infection resulting from the introduction of vaccination. 
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e) Repeat the calculation in part d) using the force of infection obtained after running the 

model assuming that R0=12.  How does the reduction in the force of infection 

predicted for this setting after the introduction of vaccination among 13 year olds 

compare against that predicted for a setting in which R0=7?  Suggest possible 

reasons for this difference, referring to graphs 4 and 5 of the Figures panel if 

necessary. 

 

2. Carry out a parameter plot (see page 16 of this document) of the (final) long-term 

average force of infection and the number of new infections among 20, 30 and 40 year 

olds assuming that R0=7 or R0=12, and compare your findings against those obtained for 

question 4 of the exercises for model 5.5.  Why might you be happier about introducing 

vaccination of 13 year olds against rubella than about introducing vaccination of children 

soon after birth?  
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Chapter 6  

An introduction to stochastic 
 modelling 
 

6.1 Model 6.1 

Readers may notice that model 6.1 is not mentioned in the text.  We originally intended to 

refer to it in the caption to Figure 6.1.  However, since the model was identical to Model 2.1, 

we thought it would be better just to refer to Model 2.1 in the caption, rather than duplicate 

Model 2.1 and rename it to Model 6.1. 
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6.2 Model 6.2 

6.2.1 Overview of the model 
 

This model, set up in Excel, illustrates how a stochastic model describing the course of an 

outbreak one infectious person enters a population comprising 10 individuals, can be set up 

using method 1 (see section 6.3 in the book). It can be used to see the patterns shown in 

Figures 6.3, 6.6 and 6.9 in the book.   

 

The file comprises one sheet. The key features of the model are as follows: 

 

1. Yellow cells (cells A12:G19).  These hold the key input parameters in the model, 

specifically, R0 (cell E15), the probability of two specific individuals coming into 

effective contact per time step, p (cell E17), and the size of population into which the 

infection is introduced (cell E18).  p is calculated from R0 using equation 6.2 in the 

book.  p is constrained so that it does not go above 1.  

 

Notice that the yellow cells in column E have been assigned the name specified in 

column F.  Therefore, if any cell has an equation which uses these cells, the name 

rather than the cell location can be used.  For example, cell E15 been assigned the 

name “R0”, and so the term “R0”, rather than the location of the cell, can be used in 

any equation (see, for example, the equation in cell E17).   

 

2. Coloured cells in rows 20-42.  These cells implement the steps for method 1 for 

each time step.  At present only the calculations for time steps 0 and 1 are visible.  

The cells are as follows: 

  

a) The individuals in the population are listed in rows 25-35. 

 

b) Column F in rows 25-35 indicates the status of each individual at the start of each 

time step.  At the start, only one person is a case and the others are susceptible.  

 

c) Rows 37-39 sum the number of susceptible, cases and immune persons at the 

start of each time step. 

 

d) Row 41 uses the values for the number of cases at the start of the time step and 

p to calculate the risk of infection during each time step using equation 6.2 in the 

book (the Reed-Frost equation). 

 

e) A random number for each susceptible person at the start is drawn in cells P25-

P35.  Cells G25-G35 use these random numbers to determine whether the 

person remain susceptible or becomes a case, using the risk of infection 

calculated for the first time step in cell F41.  

 

For example, the equation in cell G25, which refers to the initial case, is as 

follows: 

=IF(P25="--","imm",IF(P25<F$41,"case","sus")) 
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This equation first checks if a random number has been drawn for that person.  If 

no random number has been drawn for that person then that person becomes 

immune by the end of the time step.  This should have occurred if that person 

had either been a case or was immune at the start of the time step), 

 

Otherwise, if the random number in cell P25 is less than the risk of infection, then 

the person becomes a case; otherwise the person remains susceptible.   

 

Pressing the F9 key generates a new set of random numbers in column P. 

 

 

6.2.2 Suggested exercises 

 

1. Press the F9 key and check that the status of each individual by the start of the first time 

step changes in the way that you expect. 

 

2. Click on the  buttons above columns P and column Y.  You should now see the 

calculations for the remaining time steps and the final epidemic size, and a graph 

showing the numbers of cases, susceptible and immune persons over time.  Press the 

F9 key several times, for different values for R0. 

 

How does the size of R0 affect the shape of the epidemic curve and the size of the 

outbreak?   

 

3. The spreadsheet has been set up so that it is possible to collect and summarize the 

numbers of cases in each time step from several runs of the model by following the steps 

in 6.2.3.  Follow these steps; in doing so, you should be able to reproduce figures that 

are similar to Figures 6.6 and 6.9 in the book.  

 

6.2.3 Collecting the results from multiple runs of model 6.2 

 

The following steps guide you through the method used in Model 6.2 to collect and 

summarize the results from multiple runs of the model. 

 

Step 1:  Click on the  button next to row 2106.   

 

You should now see the following: 

i. Buttons providing options for running different numbers of simulations,  

ii. An empty table in rows 101 onwards showing the numbers of cases seen in each 

time step and the outbreak size for each model run. 

iii. A figure (currently empty) plotting the number of cases predicted in each time 

step for 50 runs of the model. 

 

Step 2: Click on the appropriate button to run the model once.  If you get a warning 

message about the macro not being enabled, enable the macro by following step 2 in 

section 10.1.1.  If you can’t see the Security warning mentioned in that step, you may need 

to close and reopen the spreadsheet again in order to see it. 
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This button is linked to a macro, which copies the contents of cells F38:O38 to the bottom 

available row of the grey table.  You can view the code for this macro by clicking on the View 

option on the main menu and selecting the Macro button, followed by the “View macro 

button. Then select the macro “Run_1_sim” from the list and click on the Edit button. 

 

Step 3: Click on the appropriate button to run the model 50 times (setting R0=2).  This button 

links to a macro (called “Run_50_simulations”) which runs the Run_1_sim macro 50 times. 

 

You should now find that the figure shows the number of cases predicted in each time step 

for 50 model runs.   

 

3a) According to the plot, when do you think the peak in the outbreak is most likely to occur? 

 

Insight into when the peak (or other outcome of interest) is sometimes provided from the 

mean and 95% ranges of the outcomes predicted.  As discussed in section 6.3.4 of the 

book, the output from different runs from a stochastic model is usually pooled to calculate 

these statistics. 

 

Step 4: Click on the  button next to row 63 to see some cells calculating the average and 

95% range of the number of cases predicted for each time step during the first 50 runs of the 

model, together with a plot showing these statistics. 

 

3b) What do you conclude about the time when the outbreak is most likely to peak? 

 

Step 5: Now run the model 2000 times by clicking on the appropriate button near row 100.  

You may find that this macro will run for 5-10 minutes, depending on the speed of your 

computer.  If the macro hasn’t finished 15 minutes after you have started it, press the 

Escape button to stop it. 

 

3c) How does this affect your answer to the last question?  

 

The spreadsheet has also been set up to calculate the frequency distributions of outbreak 

sizes for different numbers of model runs.   

 

Step 6:  Click on the  button next to row 95 to see these calculations, together with a plot 

which should resemble Figure 6.6 in the book.  

 

3d) What do you conclude about outbreak size that is most likely to be seen if R0 equals 2? 

 

Step 7:  Run the model 500 times using values for R0 of 0.5 and 1.0 and check to see that 

the distribution of outbreak sizes are consistent with those in Figure 6.9 in the book.   
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6.3 Models 6.3, 6.3a and 6.3b 

6.3.1 Model 6.3 

6.3.1.1 Overview of the model 

 

This model, set up in Excel, illustrates how a stochastic model describing the course of an 

outbreak after one infectious person is introduced into a population comprising 10 

individuals, can be set up using method 2 (see section 6.3 in the book).  

 

The file comprises one sheet. The key features of the model are as follows: 

 

1. Yellow and turquoise cells (cells A12:G22).  These hold the key input parameters 

in the model, which are identical to those in Model 6.2.  Specifically they hold the size 

of population into which the infection is introduced, total_popn (cell F16), R0 (cell 

F18), the probability of two specific individuals coming into effective contact per time 

step, p (cell F20).  p is calculated from R0 using equation 6.2 in the book.  p is 

constrained so that it does not go above 1.  

 

Notice that the yellow and turquoise cells in column F have been assigned the name 

specified in column G.  Therefore, if any cell has an equation which uses these cells, 

the name rather than the cell location can be used.  For example, cell F18 been 

assigned the name “R0”, and so the term “R0”, rather than the location of the cell, 

can be used in any equation (see, for example, the equation in cell F20).   

 

2. Lilac and purple cells (row 50 onwards), which hold equations for the number of 

susceptible, infectious and immune individuals over time.  At present, only the cells 

for the start are visible.  The contents of these cells are as follows:  

 

a. Columns B, C and D hold the number of susceptible, infectious and immune 

persons. 

 

b. Column E holds the risk of infection, calculated using the Reed-Frost equation 

(equation 6.2 in the book) and constrained to be below 1. 

 

c. Column F holds a random number, which is used to determine the number of 

new infections in the current time step. 

 

d. Column G calculates the number of new infections in the current time step, 

using Excel’s “CRITBINOM” distribution.  This works as the inverse of the 

binomial distribution, i.e. it identifies the number of infections which will be 

seen for given values for the cumulative probability, the number of 

susceptibles at time t (St) and t .  The general notation is as follows: 

 

=CRITBINOM(St, t , cumulative_prob) 

 

This equation is discussed in further detail in the suggested exercises below. 
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3. Clicking on the  buttons next to rows 49 and 105 will reveal a figure showing the 

number of susceptible, infectious and immune individuals over time, some summary 

statistics, together with calculations of the number of individuals in various categories 

beyond the first time step.  

 

6.3.1.2 Suggested exercises 
 

1. Click on the  button above column AA. 

 

You should now see some purple cells calculating the distribution of the number of new 

infections that could occur during the first time step, calculated using the Excel 

equivalent of equation 6.7 in the book, using the risk of infection and the number of 

susceptibles at the start.  You should also see two figures, one of which plots this 

distribution, and the other which plots the cumulative probability distribution.  

 

a) Use the random number generated for the start and the plot of the cumulative 

distribution to work out the number of new infections that should occur during time 

step 0 and check that the value you obtain is consistent with the value in cell G54. 

 

b) Press the F9 key several times to generate a new set of random numbers and check 

that the number of new infections predicted for time step 0 is consistent with that 

calculated using the CRITBINOM function. 

 

2. Change the population to comprise 1000, 10,000, 100,000 or 1 million individuals, whilst 

keeping R0 equal to 2 and the number of infectious persons at the start equal to one, and 

look at the epidemic curve predicted by the model.   

Warning note: the CRITBINOM function may fail to give sensible results for very 

large population sizes (e.g. >1 million).  

 

a) How does increasing the population size affect the shape of the epidemic curve and 

the number of generations of cases in the outbreak and why? 

 

b) How do you think the distribution of outbreak sizes (or the proportion of the 

population that has been infected by the end) predicted for a population of 1 million 

will differ from that shown in Figure 6.9 in the book?  

 

You can check your hypotheses by first clicking on the  button next to row 616, 

which will reveal buttons which, if pressed, will copy the contents of cells B26:D26 

down to the table in rows 116 from either 1 or 500 runs of the model.  If you get a 

warning message about the macro not being enabled, enable the macro by following 

step 2 in section 10.1.1.  If you can’t see the Security warning mentioned in that step, 

you may need to close and reopen the spreadsheet again in order to see it. 

 

The results from these runs are used to calculate distributions plotted in the figures in 

rows 131-152.  The buttons are linked to macros called Run_1_sim_model63 and 

Run_500_sims_model63, which can be viewed by clicking on the View option on the 

main menu and selecting the Macro button, followed by the “View macro button. 

Then select the macro from the list and click on the Edit button.   
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3. As discussed in section 6.3 in the book, the Reed-Frost equation leads to similar values 

for the risk of infection as the equation λt = βIt (where pβ), if the population size is large.  

Explore the relationship between the difference in the risk of infection calculated using 

these two equations by following the steps below. 

 

Step 1: Click on the  button above column AF.   

 

This will reveal some cells which calculate the risk of infection using the equation λt = 

pIt  (cells AD54:AD104), the percentage difference between the risk of infection 

calculated using this equation and the Reed-Frost equation (cells AE54:AE104) and 

the range of this percentage difference for the given simulation (cells AD46:AE46). 

 

Step 2: Press the F9 key several times using different values for the total population 

size of between 10 and 1 million, to identify the range in which the difference in the 

risk of infection obtained using the two equations lies.   

Note: If you wish to do this systematically, click on the  button next to row 679, 

where you will see buttons allowing you to collect the output on the minimum and 

maximum percentage difference in the risk of infection calculated using the two 

equations.  These are linked to macros called “Run_1sim_minmax” and 

“Run_50sim_minmax”.  See question 2b for details of how these macros can be 

viewed. 
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6.3.2 Model 6.3a 

6.3.2.1 Overview of the model 

This model, set up in Excel, illustrates how the approach used to set up Model 6.3 (“method 

2” in the book) can be extended to deal with time steps which are of less than one serial 

interval and to include additional transitions, such as infectious persons recovering to 

become immune, as discussed in section 6.5 in the book. 

 

The layout of the spreadsheet is similar to that of Model 6.3 and is as follows: 

 

1. Yellow and turquoise cells (cells A12:G22).  These are identical to those in 

Model 6.3, except that additional cells have been set up for the time step size, 

(cell F15), the average infectious period (cell F17) and the average rate at which 

infectious persons recover to become immune per time step (cell F21).  The 

parameters are currently set to be similar to those for influenza, with R0=2 and an 

average infectious period of 2 days. 

 

2. Lilac and purple cells (row 50 onwards), which hold equations for the number 

of susceptible, infectious and immune individuals over time.  At present, only the 

cells for days 0 and 0.5 are visible.  The contents of these cells are as follows: 

 

a. Columns B, C and D hold the number of susceptible, infectious and 

immune persons at a given time, set up using difference equations, and 

using the numbers of new infections and the individuals who become 

immune in the current time step in columns H and I. 

 

b. Column E holds the risk of infection, calculated using the Reed-Frost 

equation (equation 6.2 in the book).  This is constrained to be below 1. 

 

c. Columns F and G hold random numbers, which are used to determine the 

number of new infections and the number of infectious persons who 

become immune in the current time step. 

 

d. Columns H and I hold the number of new infections and the number of 

infectious persons who recover during the current time step using the 

CRITBINOM function.   

 

4. Clicking on the  buttons next to rows 45 and 91 will reveal a figure showing the 

number of susceptible, infectious and immune individuals over time, some summary 

statistics, together with calculations of the number of individuals in various categories 

beyond the first time step.  

 

 

6.3.2.2 Suggested exercises 

 

1. Check that the effect of the population size on the outbreak size and duration of the 

outbreak predicted in model 6.3a is consistent with that seen using model 6.3.   

Note: if you wish to do this systematically, macros which are similar to those mentioned 

in question 1b) in the exercises for model 6.3 have been set for model 6.3a.  They are 
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accessible via buttons which can be seen if you click on the  button next to row 774.  

The buttons are linked to macros called Run_1sim_model63a and 

Run_500_simulations_model63a.   
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6.3.3 Model 6.3b 
 

This model (included for reference) illustrates how a stochastic model, set up using method 

2 (with an extension to allow for several transitions and for time steps of less than one serial 

interval) can be set up in Berkeley Madonna. 

 

The model is identical to Model 4.1, except for the following: 

 

1. The number of new infections and the number of infectious persons who recover per 

time step are calculated by sampling random numbers from the Binomial distribution 

(equivalent to using the random number and the CRITBINOM function in Excel). For 

further details, see the section labelled “STOCHASTIC TRANSITIONS”. 

 

2. The equations are calculated using difference equations using the Euler method (see the 

Parameters panel and the Equations panel, and click on the reservoir icons for each 

compartment)  

 

There is one graph in the Figures panel, which plots the number of new infections per time 

step, and the number of susceptibles and immune persons over time. 
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6.4 Model 6.4 

6.4.1 Overview of the model 

This model, set up in Excel, illustrates how a stochastic model describing the course of an 

outbreak following the introduction of an infectious person in a population comprising 10 

individuals, can be set up using method 3 (see section 6.6 in the book). It can be used to see 

the patterns shown in Figures 6.6 in the book.   

 

The key features of the model are as follows: 

 

1. Yellow and turquoise cells (cells A12:G22).  These hold the key input parameters, 

which are identical to those in Model 6.3, except that additional cells have been set 

up for the average infectious period (cell F17) and the average rate at which 

infectious persons recover to become immune per time step (cell F21).  The 

parameters are currently set to be similar to those for influenza, with R0=2 and an 

average infectious period of 2 days. 

 

2. Coloured cells (row 50 onwards), which hold equations for the number of 

susceptible, infectious and immune individuals over time.  These are based on the 

summary of steps for method 3 shown on page 168 of the book.  At present, only the 

cells for day 0 and the first time step are visible.  The contents of these cells are as 

follows: 

 

a. Column A holds the time at which an event (new infection or an infectious person 

recovering) occurs. 

 

b. Columns B, C and D hold the number of susceptible, infectious and immune 

persons at a given time, set up using difference equations, and updated 

according to whether the event at the time step considered is a susceptible 

person being infected, or an infectious person recovering to become immune.  

The type of event that occurs at this time step is indicated in column M (see 

below). 

 

c. The cells in columns E, F and G calculate the hazard rate for a susceptible 

person to become infected and for an infectious person to recover to become 

immune, and for the total hazard rate for an event occurring (Mt).  The equation 

for the latter is based on equation 6.9 in the book. 

 

d. The cells in column H draw a random number to determine the time after which 

the next transition event occurs.  The cells in column I calculate the time after 

which the event occurs, using equation 6.10 in the book.  

 

e. Columns J and K calculate the probability that the next event is a susceptible 

person becoming newly infected, or an infected person becoming immune.  The 

random number drawn in column L is then referred to these probabilities to 

determine the event which occurs next.  The event which will occur next is 

indicated in column M. 
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3. Clicking on the  buttons next to rows 49 and 256 will reveal a figure showing the 

number of susceptible, infectious and immune individuals over time, some summary 

statistics, together with calculations of the number of individuals in various categories 

beyond the first time step.  

 

 

6.4.2 Suggested exercises 

1. Check that the effect of the population size on the outbreak size and duration of the 

outbreak predicted in model 6.4 is consistent with that seen using model 6.3.   

Note: if you wish to do this systematically, macros which are similar to those mentioned 

in question 1b) in the exercises for model 6.3 have been set for model 6.4.  They are 

accessible via buttons which can be seen if you click on the  button next to row 774.  

The buttons are linked to macros called Run_1sim_model64 and 

Run_500_simulations_model64.  See question 2b of the suggested exercises for Model 

6.3 for details of how these macros can be viewed. 

 

2. What are the advantages of models developed using method 3, as compared with those 

set up using method 2?  What are the disadvantages of method 3? 
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Chapter 7  

How do models deal with contact 
patterns 
 
 

7.1 Model 7.1 

7.1.1 Overview of the model 
 

This model, set up in Berkeley Madonna, describes the transmission of influenza in a 

population in which persons are stratified into the young or old.  The model is referred to in 

section 7.4.2.2 of the book.  It can be used to obtain the WAIFW matrix used in exercise 7.5 

of the book by fitting predictions to data from an epidemic curve.  The model can also be 

used to explore the impact of vaccinating children and/or adults before the start of a 

epidemic.  

 

The data used in this example come from a GP practice in Wales from the 1957 (Asian) 

influenza pandemic, which are plotted in Figure 7.3 of the book, after aggregating the data 

into two age groups.  

 

The key features of the model are described below, where the sections mentioned can be 

found in the globals tab of the flowchart version, or in the equation panel of the equation 

editor version of the model: 

 

1. The population is stratified into the “young” and the “old”.  These are intended to 

reflect those aged <15 and >15 years in the dataset plotted in Figure 7.3 of the book 

and they are also referred to as “children” and “adults” in the description below. 

 

2. Infectious young and old persons are introduced into the population at the start (see 

the section called “INITIAL VALUES”).  The number introduced at the start is 

specified by the parameters Infous_y0 and Infous_o0.  These values are unknown 

but can be estimated by fitting model predictions to the available data (see the 

suggested exercises below). 

 

3. No individuals are assumed to be immune because of natural infection at the start 

(see the section called “INITIAL VALUES”) 
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4. The parameters are currently set to be those for influenza (average pre-infectious 

period=average infectious period=2 days) - see the section called “TRANSMISSION 

AND INFECTION-RELATED PARAMETERS”. 

 

5. A proportion of all infectious persons (specified by frac_rep - see the section called 

TRANSMISSION AND INFECTION-RELATED PARAMETERS) are assumed to have 

clinical symptoms and are reported to the GP practice.  This proportion is unknown 

and can be estimated by fitting model predictions to the observed data (see 

suggested exercises below).  

 

6. The variables “Cum_reported_y” and “Cum_reported_o” store the cumulative number 

of cases reported over time.  Notice the way that this is set up in the flowchart 

version of the model.  For example, the equation in the arrow which goes into the 

“Cum_reported_y” compartment is set up so that it equals whatever is in the “new 

infectious” arrow multiplied by the value of frac_rep, thereby keeping track of the total 

number of infectious persons who are reported over time.  

 

7. The force of infection differs between the young and old, with the WAIFW matrix 

determined by the values of b1 and b2 - see the section called “TRANSMISSION 

AND INFECTION-RELATED PARAMETERS”.  The values of b1 and b2 are 

unknown and are estimated by fitting model predictions to the available data (see the 

suggested exercises below). 

 

8. The population size remains stable over time, with 2639 and 5361 young and old 

persons respectively and no births or deaths (see the section called 

“DEMOGRAPHY-RELATED PARAMETERS”).   

 

9. The model allows for a proportion of young and old persons to be vaccinated at the 

start, with a coverage specified by the values for vacc_cov_y and vacc_cov_o 

respectively, and a vaccine efficacy of vacc_eff (see the section on VACCINATION-

RELATED PARAMETERS.  The coverage is currently set to be 0%. 

 

10. The section on “AGGREGATING OUTPUT AND FITTING MODEL PREDICTIONS” 

does the following:  

a. It reads in data on the weekly numbers of young and old cases reported over 

time in the GP practice.  These data are stored in the file called “flu_data.txt”, 

which can be viewed in Notepad or another editor.   

 

b. It aggregates model predictions of the number of cases reported each day 

into predictions of the numbers of cases reported each week.  The variables 

“wkly_reported_y” and “wkly_reported_o” store model predictions of the 

number of young and old cases respectively that occurred between the 

current time in the model run and the start of the week.  The values for these 

variables therefore change with every time step and are initialized at the start 

of each new week, which accounts for the jagged lines seen when these 

variables are plotted (see Graph 4 of the Figures panel) with the default 

setting for DTOUT  of 0. It is possible to remove the jaggedness by changing 

the value for DTOUT to 7, which results in model output being presented 

every 7 days. 
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c. It calculates two statistics describing the goodness of fit of model predictions 

to the weekly numbers of young and old cases reported over time in the GP 

practice.  The goodness of fit statistics that are calculated are: 

i. SSQ - the sum of squares of the difference between model predictions 

of the number of cases in the young and old and those observed in 

the dataset. 

ii. Minus_llhood - the negative (Poisson) loglikelihood.  For convenience, 

the constant term in this expression has been dropped (see the code 

for further details).   

 

11. Several useful statistics have been set up in the “USEFUL STATISTICS” section, 

such as the total number of young and old persons in the population.   

 

 

The panel with the figures includes 4 graphs: 

Graph 1: This plots the proportion of young persons who are susceptible or immune, 

and the number of new infectious young persons per 100,000 per day over 

time.   

Graph 2: This is similar to Graph 1, except that it refers to old persons. 

Graph 3: This compares model predictions of the cumulative numbers of young and 

old cases reported against those observed.  These are stored in the 

variables #cum_rep_y and #cum_rep_o, which have been imported from the 

text files cum_rep_y.txt and cum_rep_o.txt.  These files can also be viewed 

in Notepad or another text editor. 

Graph 4: This compares model predictions of the weekly number of reported young 

and old cases against the corresponding numbers observed.   

 

Note that plotting the values in flu_data.txt is not straightforward in Berkeley 

Madonna, since this file has more than two columns and Berkeley Madonna 

is not designed to do plot data from such files easily.  The files 

weekly_cases_y.txt and weekly_cases_o.txt, which both consist of 2 

columns, have therefore been imported into the model so that model 

predictions and the actual numbers of reported young and old cases each 

week can be plotted in the same figure.  To see these data, click on the 

buttons labelled #weekly_cases_y and #weekly_cases_o in the Figure.  Set 

the value for DTOUT to be 7 (days) if to remove the jagged effect of the plot 

of model predictions of the weekly numbers of reported cases. 

 

7.1.2 Suggested exercises 

 

The first question illustrates how model predictions can be fitted to observed data to estimate 

unknown parameters.  If you wish just to explore how assumptions about contact between 

individuals affect the impact of control, you may like to skip to question 2.  

 

1. Several parameters in the model, namely the contact parameters for the WAIFW matrix 

(b1 and b2), the proportion of infectious persons that have clinical symptoms and are 

reported to the GP practice (fract_rep) and the initial numbers of infectious young and 

old persons (infous_y0 and infous_o0) are unknown in the model.  These parameters 
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can be estimated using Berkeley Madonna’s “curve fit” or “optimize” functions, which are 

described in section 10.2. 

 

a) Follow the steps in section 10.2.1 of this document to use the Curve fit option to 

estimate all of these parameters at the same time.  You may like to use the values for 

guess 1 and guess 2 (and try any others that you prefer) on the next page. 

 

b) Follow the steps in section 10.2.2 of this document to use Berkeley Madonna’s 

optimize function to estimate the above parameters by minimizing:  

i) ssq (the sum of squares of the difference between model predictions and the 

observed data) and  

ii) the minus_llhood.  

 

As for part a), you may wish to use the following values for Guess 1 and 2: 

 

Parameter Guess 

number 

Starting set of parameter values 

A B C 

b1 (per day) 1 3.60×10-4 3.32×10-4 2.00×10-4 

 2 4.00×10-4 3.40×10-4 6.00×10-4 

b2  (per day) 1 5.40×10-4 4.00×10-4 3.00×10-4 

 2 6.70×10-5 7.00×10-5 5.00×10-5 

frac_rep 1 0.60 0.45 0.30 

 2 0.45 0.49 0.80 

Infous_y0 1 1 3 7 

 2 3 10 20 

Infous_y0 1 2 2 10 

 2 6 9 15 

 

c) What can you conclude about the parameters that you have estimated?  

 

 

2. Incorporate the following values for b1 and b2 into the model:  b1= 3.38×10-4 per day and 

b2=7.14×10-5 per day.  Assuming that there are sufficient doses of vaccine for 2500 

individuals in the population before the outbreak, use estimates of the total numbers of 

cases reported to determine whether it would be best to provide the vaccines to: 

i) children only; 

ii) adults only; 

iii) the same proportion of children and adults; 

iv) equal numbers of children and adults. 

 

Compare your answer against that obtained for question 7.5 in the book or using 

Model 7.6. 

 

Note: you may find that incorporating certain levels of vaccination coverage and 

extending the stoptime in the model will result in error messages.  These may be due 

to Berkeley Madonna struggling to calculate several statistics in the section on 

“AGGREGATING OUTPUT AND FITTING MODEL PREDICTIONS”.  If this occurs, 

you can simply comment out this entire section by inserting a curly bracket at the start 

and end of the section.  

  

http://www.anintroductiontoinfectiousdiseasemodelling.com/


AN INTRODUCTION TO INFECTIOUS DISEASE MODELLING – GUIDE TO THE ONLINE MATERIAL | 75 
                                                           CHAPTER 7: HOW DO MODELS DEAL WITH CONTACT PATTERNS?         

 
 

Version 5, released 28/02/2021 
www.anintroductiontoinfectiousdiseasemodelling.com 

7.2 Model 7.2  

7.2.1 Overview of the model 

 

This model, set up in Berkeley Madonna, describes the transmission dynamics of rubella in 

an age-structured population (one with a “Realistic Age Structure”, using the approach of 

Schenzle (1984) - see Panel 5.4 of the book).  

 

There are two versions of this model, both of which are similar to model 5.5; these 

incorporate the age-dependent contact patterns described by matrices R1 and R2, which are 

calculated in section 7.4.2.1.1 of the book.  The file called “model 7.2 - matrix R1.mmd” 

incorporates the age-dependent contact parameters described in Matrix R1; the file called 

“model 7.2 - matrix R2.mmd” incorporates the age-dependent contact parameters described 

in Matrices R2. 

 

The files can be used to generate the predictions of the number of new infectious persons 

with rubella per 100,000 population that are shown in Figure 7.11 in the book.  

 

The key features of the model are as follows:  

• The population is stratified into annual age strata between the ages 0 and 75 years, 

with each age stratum moving to the subsequent age stratum at the end of each 

year, as shown in Figure O.5.1. 

• Vaccination of newborns is introduced in the year specified by year_start_vacc, with 

an effective coverage specified by eff_vcov_newborns. 

• The infection-related parameters are currently set to be those for rubella (average 

pre-infectious period=10 days, average infectious period= 11 days). 

• The force of infection differs between those aged 0-14 years (the young) and those 

aged ≥15 years. 

 

Further technical details of the model are provided below.   

 

7.2.2 Further details of the model 

 

Equations: 

These are identical to those described for Model 5.5 (see page 52), except for the following:  

• The value for “up_age” (the maximum age of persons in the population) is set to be 

74 years. 

• The expression for the number of new infections in the difference equations for the 

Susceptible and Pre-infectious persons for each age stratum is given by 

force_of_infn[i]*Sus[i]*dt. 

 

Demography: 

1. The population comprises 55 million persons, as specified by the value of total_popn 

(see the section on “Demography-related variables”. 

 

2. The age distribution is rectangular.  The number of persons in each single year age 

stratum (and therefore the number of births each year) is given by 

total_popn/(up_age+1). 

http://www.anintroductiontoinfectiousdiseasemodelling.com/


76  | AN INTRODUCTION TO INFECTIOUS DISEASE MODELLING – GUIDE TO THE ONLINE MATERIAL  
        CHAPTER 7: HOW DO MODELS DEAL WITH CONTACT PATTERNS? 

 

 
Version 5, released 28/02/2021 
www.anintroductiontoinfectiousdiseasemodelling.com 

 

3. The variables tot_pop[0], tot_pop[1], tot_pop[2] equal the total number of individuals 

who are in their first, second, third etc year of life in the model  (i.e. in the age stratum 

0, 1, 2 years etc).  Tot_pop[0], tot_pop[1] etc are defined in the “USEFUL SUMMARY 

STATISTICS” section.   

 

 

Transmission and infection : 

1. The infection-related parameters are currently set to be those for rubella (pre-

infectious period=10 days, infectious period= 11 days) - see the section called 

“TRANSMISSION AND INFECTION-RELATED PARAMETERS”.  

 

2. The rate at which two specific individuals come into effective contact per unit time 

differs between those aged 0-14 years (the “young”) and those aged ≥15 years (the 

“old”.  It is determined by the values beta_yy, beta_yo, beta_oy and beta_oo, which 

in turn, are determined by the values of beta_1 and beta_2. 

 

3. The force of infection differs between the young and the old.  For those aged 0-14 

years, it is calculated using the equation:  

 

force_of_infn[0..14] = beta_yy*Tot_infous_y + beta_yo*Tot_infous_o 

 

For those aged ≥15 years, it is calculated using the equation: 

 

force_of_infn[15..up_age] = beta_yo*Tot_infous_y + beta_oo*Tot_infous_o 

 

Here, tot_infous_y and tot_infous_o are the total numbers of young and old persons 

in the population, and are calculated in the “USEFUL SUMMARY STATISTICS” 

section 

 

 

Vaccination: 

The assumptions are identical to those used in Model 5.5, as follows: 

 

1. Vaccination of newborns is introduced some years after the start (specified by the 

value of year_start_vacc).  The proportion of newborns that is immunized each year 

is stored in the parameters prop_newborns_immunized and eff_vcov_newborns.  

Note that the effective coverage is interpretable as the product of the vaccination 

coverage and the vaccine efficacy.  For further details, see the section called 

“VACCINATION-RELATED PARAMETERS”. 

 

2. Unvaccinated newborns are added to the Sus[0] compartment at the end of each 

year; vaccinated newborns are added to the Imm[0] compartment at the end of each 

year (see the section called “DIFFERENCE EQUATIONS – PERSONS IN THEIR 

FIRST YEAR OF LIFE”.  

 

Miscellaneous: 

1. Several useful statistics have been set up in the “USEFUL STATISTICS” section, 

such as the proportion of 5, 10, 15 etc year olds who are susceptible, the daily 

numbers of new infections per 100,000 in various age groups. 

http://www.anintroductiontoinfectiousdiseasemodelling.com/


AN INTRODUCTION TO INFECTIOUS DISEASE MODELLING – GUIDE TO THE ONLINE MATERIAL | 77 
                                                           CHAPTER 7: HOW DO MODELS DEAL WITH CONTACT PATTERNS?         

 
 

Version 5, released 28/02/2021 
www.anintroductiontoinfectiousdiseasemodelling.com 

 

Figures: 

The Figures panel has 6 graphs: 

Graph 1: This plots the number of individuals in each age stratum over time. 

Graph 2: This plots the number of individuals in each age stratum at the end (with 

the age stratum on the x-axis). 

Graph 3: This plots the daily force of infection among the young and old over time. 

Graph 4: This plots the number of infectious young and old persons over time. 

Graph 5: This plots the proportion of the population that is susceptible in different 

age groups and overall over time. 

Graph 5: This plots the number of infectious young and old persons in the population 

overall over time. 

Graph 6: This plots the daily number of new infections per 100,000 per day over 

time.  By changing the value for eff_cov_newborns to 0.72, you should be 

able to reproduce Figure 7.11 in the book. 

 

 

7.2.3 Suggested exercises 

 

1. Run the model using matrix R1, assuming that no persons are vaccinated and check the 

following: 

 

a) Click on graphs 1 and 2 of the Figures panel to check that the number of persons in 

each age stratum equals the value that you expect.   

 

b) Click on Graph 3 of the Figures panel to check that the values for the average daily 

force of infection among the young and the old are consistent with the values 

estimated in the serological data for England and Wales (13% and 4% per year 

respectively), which were also used to calculate the β parameters. 

 

c) Click on Graph 4 of the Figures panel to check that the values for the number of 

infectious young and old persons are consistent with the values calculated in Panel 

7.4 of the book (18,965 and 2,859 respectively). 

 

d) Repeat steps a)-c) using matrix R2. 

 

2. You may recall from chapter 5 that if vaccination among newborns is introduced into the 

population, the force of infection decreases and the proportion of adults in a given age 

group who are susceptible increases. 

 

Run model 7.2 using both matrices R1 and R2, assuming that 50% of newborns are 

vaccinated and answer the following questions. 

 

a) Referring to Graph 3 of the Figures panel, read off the long-term average force of 

infection obtained for the young and old.  

 

b) Why does the force of infection predicted for old persons after vaccination is 

introduced among newborns for the population mixing according to matrix R1 differ 
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from the corresponding value obtained for the population in which individuals mix 

according to matrix R2?  

 

c) For which assumption about contact between individuals would you expect the 

proportion of 20 year olds who are susceptible in the long-term to be highest 

following the introduction of vaccination for a given level of coverage among 

newborns?  Check your hypothesis by referring to Graph 5 of the Figures panel. 

 

d) You may also recall from chapter 5 that if vaccination among newborns is introduced 

with a coverage which is below the herd immunity threshold, then the overall 

proportion of the population that is susceptible is identical to that before the 

introduction of vaccination.  These predictions were based on the assumption that 

individuals mix randomly.   

 

Look at Graph 5 of the Figures panel of both models to check if this result still holds if 

individuals in the population are assumed to mix non-randomly. 

 

 

3. a) Run both models assuming that 72% of newborns are immunized.  Check that 

predictions of the daily number of new infections per 100,000 population are 

consistent with those in Figure 7.11. 

 

b) As mentioned on page 210 of the book, the basic reproduction number associated 

with matrices R1 and R2 are 3.5 and 4.75 respectively (NB As stated in the erratum 

page, the R0 for matrix R1 is about 3.5 and not 3.6, as stated on page 210 of the 

book.).   

 

Calculate the herd immunity thresholds that are associated with these matrices and 

check that if you incorporate an effective vaccination coverage among newborns 

which is: 

i) slightly greater than the herd immunity threshold for the given mixing 

pattern, then transmission ceases; 

 

ii) slightly less than the herd immunity threshold for the given mixing 

pattern, then transmission continues. 

 
 

4. In chapter 5, we also explored how the number of new infections in different adult age 

groups might change as the vaccination coverage among newborns increased, 

 

a) Carry out a parameter plot (see page 16 of this document) of the long-term daily 

number of new infectious persons per 100,000 population for those aged 20, 30 

and 40 years against the effective vaccination coverage among newborns using 

matrices R1 and R2 and compare them against that obtained using Model 5.5  

(see question 4 of the suggested exercises for Model 5.5).  Note: you may 

prefer to set the number of runs to be 21 in the Parameter plot, with the 

effective coverage ranging between 0 and 1; you may also want to set the 

STOPTIME to equal 400,000 days. 
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b) How does the assumption that individuals contact each other according to mixing 

pattern R1 influence conclusions about the number of new infections per 100,000 

population in different adult age groups, and the effect of vaccination of 

newborns? 
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7.3 Model 7.3  

7.3.1 Overview of the model 
 

This model, set up in Excel, can be used to calculate the basic reproduction number that is 

associated with a given WAIFW matrix or Next Generation Matrix, in which the population is 

stratified into two different groups.  It can be used to see the patterns shown in Figures 7.13, 

7.14 and 7.15 in the book. 

 

The file comprises two spreadsheets.  The spreadsheet “matrix A or B” can be used to 

calculate R0 given input just on the Next Generation Matrix.  The spreadsheet “matrix R1 or 

R2” is similar to “matrix A or B” except that the Next Generation Matrix is calculated from 

input on the WAIFW matrix, the duration of infectiousness and the size of the two groups 

considered in the population.  

 

Differences between the layouts of sheets “Matrix R1 or R2” and “Matrix A or B” are 

described in suggested exercise 4 (see below); the layout of the worksheet “Matrix A or B” is 

as follows: 

1. Yellow cells (cells A11:K22):  These hold the number of infectious young and old 

persons introduced into the population (cells G20 and G21 respectively). 

 

Notice that these have been assigned names.  Therefore, if any cell has an equation 

which uses a named cell, the cell name rather than the cell location can be used in 

the equation.  For example, cell G20 has been assigned the name “infous_y0”, and 

so the term “infous_y0”, rather than the location of the cell, can be used in any 

equation. 

 

2. Turquoise cells (cells A29:K24): these hold the Next Generation Matrix in cells 

D32:E33.   

 

Notice that the cells have been assigned the names R_yy, R_yo, R_oy and R_oo.  

To see the name, click on the cell and look at the white bar to the left of the formula 

bar below the ribbon.   

 

3. Lilac cells (row 38 onwards):  These hold the number of infectious persons in each 

generation.  Column J holds the number of infectious young and old persons 

introduced at the start in the simulated population that is used to calculate R0; column 

K holds the numbers of infectious young and old persons in the first generation, 

which are calculated using the Next Generation Matrix and the numbers of infectious 

young and old persons at the start. 

 

7.3.2 Suggested exercises  
 

1. Use the values for R_yy, R_yo, R_oy and R_oo, together with the number of infectious 

young and old persons in the first generation to calculate the number of infectious young 

and old persons, and the total number of infectious persons in the second generation. 

 

http://www.anintroductiontoinfectiousdiseasemodelling.com/


AN INTRODUCTION TO INFECTIOUS DISEASE MODELLING – GUIDE TO THE ONLINE MATERIAL | 81 
                                                           CHAPTER 7: HOW DO MODELS DEAL WITH CONTACT PATTERNS?         

 
 

Version 5, released 28/02/2021 
www.anintroductiontoinfectiousdiseasemodelling.com 

You can check your answer by clicking on the  button above column U, which will 

reveal the number of infectious persons until the 10th generation, together with Figure A, 

which holds a plot of these numbers. 

 

2. Calculate the following: 

a) The ratio between the number of infectious persons in generation 8 and that in the 

preceding generation.  Repeat your calculations considering generations 9 and 10 to 

see whether this ratio converges to the value specified on page 209 of the book 

(about 0.7). 

 

b) The proportion of the infectious persons in generations 8, 9 and 10 who are young.  

 

You can check your answers by clicking on the  buttons above column AD and next to 

row 50.  This will reveal the ratio between the numbers of infectious persons in 

successive generations, the proportion of the persons in each generation who are young 

and old, together with plots of these values.  These plots should be similar to those in 

Figures 7.14 and 7.15 of the book.  

 

3. a) Change the initial numbers of infectious young and old persons to be any values you 

choose (e.g. the values presented in the legend to Figure 7.13 in the book), and check 

to see that the ratio between the numbers of infectious persons in each generation, 

together with the proportion of the infectious persons in each generation who are 

young always converge to the same value.  

 

b) Repeat your calculations using Matrix B presented on page 206 of the book, i.e. 










1.01.0

1.06.1
 or any other matrix that you choose.  Note: you may find that matrices 

which have the following kinds of structures 








30

01
 or 









01

30
 (i.e. ones which have 

non-zero entries along one of the diagonals of the matrix, but zeros elsewhere) do not 

behave as you might expect.  These matrices are discussed on page152 in the 

solutions to question 2c) for section 7.3.2. 

 

 

4. Click on the spreadsheet labelled “Matrix R1 or R2”.  Its layout is identical to that for the 

spreadsheet “Matrix A or B”, except that it has additional yellow cells, which contain the 

following: 

• The number of young and old persons which are used to calculate the Next 

Generation Matrix (cells G14 and G15); 

• The duration of infectiousness (G16); 

• A WAIFW matrix in cells D26:E27, for which the β parameters are currently 

set to be those for matrix R1 (see section 7.4.2.1.1).  

 

a) Check that the value obtained for R0 is consistent with the value presented for matrix 

R1 on page 210 of the book (see also errata page), i.e.  a value of about 3.5. 
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b) Change the values for the β parameters in the WAIFW matrix to be those for matrix 

R2 (see page 198 of the book) and check that the value that you estimate for R0 is 

consistent with the value presented for matrix R2 on page 210 of the book, i.e.  a 

value of about 4.75. 
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7.4 Model 7.4  

7.4.1 Overview of the model 

 

This file, set up in Excel, illustrates how R0 for matrices R1 and R2 (see section 7.4.2.1.1 of 

the book) can be calculated using the simultaneous equation and matrix determinant 

approaches described on pages 212 and 213 of the book.  

 

The file comprises a single sheet, called “matrix R1 or R2”. 

 

The layout of the worksheet is as follows: 

1. Yellow cells (cells A11:K21):  These hold the following: 

• The numbers of young and old persons in the population (cells G14 and G15 

respectively); 

• The average infectious period (cell G16); 

• The proportion of the typical infectious person which is young (cell G18)  

• A cell which will eventually hold the value for R0 (cell G19); 

• A WAIFW matrix in cells D26:E27, for which the β parameters are currently 

set to be those for matrix R1 (see section 7.4.2.1.1). 

 

Notice that these have been assigned names.  Therefore, if any cell has an equation 

which uses a named cell, the name rather than the cell location can be used.  For 

example, cell G14 has been assigned the name “N_y”, and so the term “N_y”, rather 

than the location of the cell, can be used in any equation. 

 

2. Turquoise cells (cells A29:K24): these hold the Next Generation Matrix in cells 

D32:E33.   

 

Notice that the cells have been assigned the names R_yy, R_yo, R_oy and R_oo.  

To see the name, click on the cell and look at the white bar to the left of the formula 

bar below the ribbon.   

 

3. Cells which are set up for calculating R0 using the simultaneous equations 

approach (rows 43-54) and the matrix determinant approach (rows 58-64).  The 

calculations are described in the exercises below. 

 

7.4.2 Suggested exercises 

 

1. As described on pages 212-213 in the book, if the population is stratified into the young 

and the old, R0 and the proportion of the typical infectious person that is young (x) satisfy 

the following equations: 

 

xRxRxR yoyy 0)1( =−+  7.37 

)1()1( 0 xRxRxR oooy −=−+  7.38 

 

Cells D51 and D52 hold the left hand sides of equations 7.37 and 7.38 respectively; cells 

E51 and E52 hold the right hand sides of equations 7.37 and 7.38 respectively. The 
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values for x and R0 used in these equations are given by the values of x and R0_est in 

cells G18 and G19 respectively.  

  

We can use Excel’s Solver function (see section 10.1.1 of this document) to find values 

for R0 and x which satisfy these equations by identifying the values for R0_est and x 

(cells G19 and G18 respectively) which result in both the value of cell D51 being equal to 

F51, and in the value of cell D52 being equal to F52.  

 

For this purpose, the grey cells I51, I52 and I55 have been set up as follows: 

• Cell I51 measures the square of the difference between the values of cells 

D51 and F51;  

• Cell I52 measures the square of the difference between the values of cells 

D52 and F52; 

• Cell I55 takes the sum of cells I51 and I52.  Consequently, this cell should be 

equal to zero once R0_est equals the value for R0 that is associated with the 

Next Generation Matrix, and once x equals the proportion of the typical 

infectious person that is young.  

 

As discussed in section 10.1.1, when using Solver to identify unknown parameters, we 

need to specify some single “Target cell” which has to be minimized (maximized or set to 

zero) by varying the parameters that we are interested in.  In our case, we need to vary 

R0_est and x in order to find the minimum value for cell I55. 

 

a) Set the value for R0_est to be about 3, and x to be about 0.5 and use the Solver 

function (accessed from the Data option in the main menu) to find R0 and x.  The 

values that you obtain should be identical to those obtained for Matrix R1 using the 

simulation approach (see model 7.3) i.e. 3.53 and about 0.31 respectively. 

 

b) Reset R0_est and x to equal 1.5 and 0.5 respectively, and re-run Solver.  What do 

you notice about the value for x and R0?  How might you fix the problem?  

 

To fix the problem encountered in part b), we can set up constraints in Solver so that the 

parameters that it finds are in a plausible range.  

 

c) Run Solver after setting up the constraints that x≥0 and x≤1 to check that you obtain 

plausible values for R0 and x. 

 

2. As described on page 212 of the book if the population is stratified into the young and 

the old, the value for the R0 associated with a given Next Generation Matrix is the value 

which results in the determinant of the following matrix being equal to zero: 















−

−

0

0

RRR

RRR

oooy

yoyy
 

 

This matrix is set up in cells D63:E64, with R0 taking the value R0_est.  The determinant 

of this matrix is calculated in cell H63.   

 

a) Set the value for R0_est to equal 3 and run Solver to find values for R0_est which 

result in the determinant of the above matrix being equal to zero.   
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b) Reset R0_est to equal 2 and re-run Solver.  What do you notice about the value for 

R0_est?   

 

c) What are the merits of using the matrix determinant, simultaneous equations and 

simulation approaches for calculating R0?  
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7.5 Model 7.5 

7.5.1 Overview of the model 
 

This model, set up in Excel, is designed to calculate R0 and the net reproduction number for 

measles in England in 1994/5 following the method used by Gay et al, as described in 

section 7.5.4.1 of the book.  It can also be used to answer some parts of question 7.4 in the 

book.  

 

The spreadsheet comprises 2 sheets: 

1. Sheet “R0_Rn_calcs_fin” holds all the calculations for the Next Generation Matrix, R0 

and the net reproduction number.   

2. Sheet “R0_Rn_calcs_empty” is identical to “R0_Rn_calcs_fin” except that the cells 

holding key calculations are left blank.  You will be able to fill in the cells by following 

the steps in the suggested exercises below. 

 

The layout of the spreadsheet “R0_Rn_calcs_fin” is as follows:  

1. Yellow cells (cells A11:I35):  These hold the following: 

• The duration of infectiousness (in years) in cell F13; 

• The values for the β parameters (units of per year) and alpha, which is the 

scalar used by Gay et al to define the amount of contact between individuals 

aged 10-14 years.  These are in row 17 and the cell for each β parameter has 

been assigned a different colour; 

• The WAIFW matrix (in cells C22:G26) which was used by Gay et al in the 

analyses.  This is set up using the contents of row 17 and the cells have the 

same colour coding that i used for the cells in this row.  Figure 1 plots this 

WAIFW matrix.  

• The number of persons in each age group in England in 1994/5 (row 31); 

• The estimated numbers of susceptible persons in each age group in England 

in 1994/5 (row 32) – see the footnote to Table 7.3 in the book for details of 

how these were calculated; 

• The number of persons introduced at the start in the simulated population 

which will be used to calculate R0 and Rn (see below)  

 

Notice that the cells have been assigned names.  Therefore, if any cell has an 

equation which uses a named cell, the name rather than the cell location can be 

used.  For example, cell B17 has been assigned the name “beta_1”, and so the term 

“beta_1”, rather than the location of the cell, can be used in any equation. 

 

2. Turquoise cells (cells A36:I43):  Clicking on the  button next to row 44 will reveal 

the Next Generation Matrix in cells D39:H43, which can be used to calculate R0.  

Notice that the cells have been assigned the names R_11, R_12, R_13 etc.  To see 

the name, click on the cell and look at the white bar to the left of the formula bar 

below the ribbon.   

 

3. Lilac cells (row 67 onwards): These hold the calculations for R0 using the 

simulation approach.  The cells are as follows: 

 

http://www.anintroductiontoinfectiousdiseasemodelling.com/


AN INTRODUCTION TO INFECTIOUS DISEASE MODELLING – GUIDE TO THE ONLINE MATERIAL | 87 
                                                           CHAPTER 7: HOW DO MODELS DEAL WITH CONTACT PATTERNS?         

 
 

Version 5, released 28/02/2021 
www.anintroductiontoinfectiousdiseasemodelling.com 

• Row 71 holds the numbers of infectious persons that are introduced at the start in 

each age group in the simulated population which is used to calculate R0.   

• Columns B-G in row 72 holds the numbers of infectious persons in each age 

group and overall in the simulated population in the first generation.  These are 

calculated using the Next Generation Matrix and the numbers of infectious 

persons in each age group at the start.   

• Column I holds the ratio between the number of infectious persons in the first 

generation and that in the preceding generation. 

• Rows 73-81 (seen by clicking on the  button next to row 82) will reveal the 

number of infectious persons in each generation until the 10th generation, 

together with ratio between the numbers of infectious persons in successive 

generations (i.e. calculations of R0).  This ratio is plotted in Figure 2, which can be 

seen by clicking on the  button next to row 66. 

 

4. Calculations of the net reproduction number: clicking on the  button above 

column T will reveal the following: 

• The Next Generation Matrix in cells N39:R43, which can be used to calculate 

Rn (see section 7.5.4 in the book for the expression used to calculate each 

element of the Next Generation Matrix).  Notice that the cells have been 

assigned the names Rn_11, Rn_12, Rn_13 etc.   

• Lilac cells in columns K-S in row 67 onwards.  These hold calculations of Rn, 

using the Next Generation Matrix in cells N39:R43.  The calculations are 

analogous to those used to calculate R0 in columns B-I. 

• Figure 3, which plots the ratio between the number of infectious persons in a 

given generation and that in the preceding generation. 

 

 

7.5.2 Suggested exercises 

 

Questions 1-2 and 4a-c involve setting up equations yourself in the worksheet 

“R0_Rn_calcs_empty”.  If you prefer to avoid doing this, you may wish to skip to questions 3 

and 4d-e, where you can think how assumptions about the amount of contact between 10-14 

year olds (determined by the value for α) influence R0, Rn and conclusions about the 

potential for a measles epidemic to occur 

 

1. In the worksheet “R0_Rn_calcs_empty”, use the WAIFW matrix provided together with 

the number of individuals in each age group (row 31), and the duration of infectiousness 

(cell F13) to set up the Next Generation Matrix in cells D39:H43.   

 

You can check your answer against the values in the corresponding cells in the 

worksheet “R0_Rn_calcs_fin”. The values that you obtain should be consistent with 

those for the solutions to question 7.4b ii) in the book. 

 

2. a) In the worksheet “R0_Rn_calcs_empty”, use the Next Generation Matrix that you have 

just calculated, together with the number of infectious persons in each age group at 

the start to calculate the following for the simulated population: 

i. The number of infectious persons in each age group and the total number of 

individuals in the first generation (in cells B72:G72); 
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ii. The ratio between the total number of infectious persons in the first 

generation and that at the start (in cell I72). 

 

b) Copy the equations that you have just set up down to the 10th generation, and check 

that, assuming that α=1.5, the ratio between the number of infectious persons in the 

current and preceding generation converges to the same value as that in sheet 

“R0_Rn_calcs_fin”.   

 

If α=1.5, this ratio (and therefore the value for R0) should be 9.9 (see also the solution 

to question 7.4b ii) in the book). 

 

3. How does changing the size of α change the value for R0, and why?  

 

4. Click on the  button above column T in the worksheet “R0_Rn_calcs_empty”.  You 

should now see some blank turquoise and lilac cells (rows 36-43 and 67 respectively 

onwards). 

 

a) Use the values for the number of susceptible persons in each age group in 1994/5 in 

cells C32:G32, the duration of infectiousness and the WAIFW matrix provided to 

calculate the Next Generation Matrix that you need in order to calculate the net 

reproduction number.   

 

The values that you obtain should be identical to those presented on page 217 of the 

book (see also the spreadsheet “R0_Rn_calcs_fin”.  

 

b) Use your answer to part a) to set up equations in the appropriate cells for the number 

of infectious persons in each age group in the first generation in columns and an 

equation for the ratio between the numbers of infectious persons in the first 

generation and that in the preceding generation. 

   

c) Copy the equations for the first generation down until the 10th generation and check 

that the value for Rn for 1994/5 that is obtained assuming that α=1.5 are consistent 

with the value of about 1 (see Figure 7.17 in the book). 

 

d) Explore how changing the value of α affects the estimates that you obtain for the net 

reproduction number. 

 

e) Do you think that there was potential for a measles epidemic to occur in 1994/5 in 

England? 
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7.6 Model 7.6 

7.6.1 Overview of the model 

 
This model, set up in Excel, is designed to calculate R0 and the net reproduction number for 

influenza for the example in question 7.5 in the book, for different assumptions about the 

distribution of the vaccine doses between the young and old.  

 

The spreadsheet comprises 2 sheets: 

1. Sheet “R0_Rn_calcs_fin” holds all the calculations for the Next Generation Matrix, R0 

and the net reproduction number.   

2. Sheet “R0_Rn_calcs_empty” is identical to “R0_Rn_calcs_fin” except that the cells 

holding key calculations are left blank.  You will be able to fill in the cells by following 

the steps in the suggested exercises below. 

 

The layout of the spreadsheet “R0_Rn_calcs_fin” is as follows: 

1. Yellow cells (cells A11:I29):  These hold the following: 

• The duration of infectiousness (in days) in cell F13. 

• The WAIFW matrix (in cells C19:D20) which was estimated using Model 7.1 

and is provided in the exercise.  Figure 1 plots this WAIFW matrix.  

• The number of persons in each age group in the population (row 24). 

• The numbers of young and old persons vaccinated (row 25). 

• The minimum number of susceptible young and old persons. 

• The number of persons introduced at the start in the simulated population 

which will be used to calculate R0 and Rn (see below).  

 

Notice that the cells have been assigned names.  Therefore, if any cell has an 

equation which uses a named cell, the cell name rather than the cell location can be 

used in that equation.  For example, cell C19 has been assigned the name “b_yy”, 

and so the term “b_yy”, rather than the location of the cell, can be used in any 

equation.  To see the name, click on the cell and look at the white bar to the left of 

the formula bar below the ribbon.   

 

2. Turquoise cells (cells A30:I34):  Clicking on the  button next to row 35 will reveal 

the Next Generation Matrix in cells C33:D44, which can be used to calculate R0.  

Notice that the cells have been assigned the names R_yy, R_yo, R_oy and R_oo.   

 

3. Lilac cells (row 61 onwards): Clicking on  button next to row 76 will reveal the 

calculations for R0 using the simulation approach.  The cells are as follows: 

 

• Row 65 holds the numbers of young and old infectious persons that are 

introduced at the start in each age group in the simulated population which is 

used to calculate R0.   

• Columns B-D in row 66 holds the numbers of young, old and total infectious 

persons in the simulated population in the first generation.  These are calculated 

using the Next Generation Matrix and the numbers of infectious persons at the 

start.   
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• Column F holds the ratio between the number of infectious persons in the first 

generation and that at the start. 

• Rows 67-75 hold the number of infectious persons in each generation until the 

10th generation, together with ratio between the numbers of infectious persons in 

successive generations (i.e. calculations of R0).  This ratio is plotted in Figure 2. 

 

4. Calculations of the net reproduction number: clicking on the  button above 

column U will reveal the following: 

• The Next Generation Matrix in cells N33:O34, which can be used to calculate 

Rn.  Notice that the cells have been assigned the names Rn_yy, Rn_yo, 

Rn_oy and Rn_oo etc.   

• Lilac cells in columns K-T in row 65 onwards.  These hold calculations of Rn, 

using the Next Generation Matrix in cells N33:O34.  The calculations are 

analogous to those used to calculate R0 in columns B-F. 

• Figure 3, which plots the ratio between the number of infectious persons in a 

given generation and that in the preceding generation. 

 

7.6.2 Suggested exercises 

 

You can practice setting up calculations for the basic and net reproduction number yourself 

in the spreadsheet “R0_Rn_calcs_empty”, by following the steps provided below for 

questions 1-3.  Alternatively, you may like to skip to question 4, where you can think about 

the impact of different options for the distribution of the vaccine doses between the young 

and old. 

 

 

1. In the worksheet “R0_Rn_calcs_empty”, use the WAIFW matrix provided, the number of 

young and old persons in the population (row 24), and the duration of infectiousness (cell 

F13) to set up the Next Generation Matrix in cells C43:D44.   

 

You can check your answer against the values in the corresponding cells in the 

worksheet “R0_Rn_calcs_fin”. These values should be consistent with those for the 

solutions to question 7.5a in the book. 

 
2. a) In the worksheet “R0_Rn_calcs_empty”, use the Next Generation Matrix that you have 

just calculated, together with the number of infectious persons at the start to calculate 

the following for the simulated population: 

i. The number of young and old infectious persons and the total number of 

infectious persons in the first generation (in cells B66:D66); 

ii. The ratio between the total number of infectious persons in the first 

generation and that at the start (in cell F66). 

 

b) Copy the equations that you have set up for the first generation down to the 10th 

generation, and check that the ratio calculated in column F (and therefore the value 

for R0) converges to about 1.85.  This value should be consistent with that in the 

solutions to question 7.5a in the book.   

 

3. Click on the  button above column U in the worksheet “R0_Rn_calcs_empty”.   
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a) Use the values for the number of young and old susceptible persons in cells 

C26:D26, the duration of infectiousness and the WAIFW matrix provided to calculate 

the Next Generation Matrix that you need in order to calculate the net reproduction 

number.   

 
b) Use your answer to part a) to set up equations in the appropriate cells for the number 

of infectious young and old persons in the first generation and an equation for the 

ratio between the numbers of infectious persons in the first generation and that in the 

preceding generation. 

   
c) Copy the equations for the first generation down until the 10th generation, and check 

that the ratio calculated in column F (and therefore the value for Rn) converges to a 

value which is equal to R0 (i.e. 1.85) if the Next Generation Matrix is calculated 

assuming that everyone is susceptible at the start.  In the following question, you will 

be able to explore the effect of different assumptions about the number susceptible 

when calculating Rn. 

 

4. Assuming that there are sufficient vaccination doses for only 2500 individuals for use 

before the start of a pandemic, use estimates of the net reproduction number to decide 

whether it would be best to provide the vaccines to: 

i) children only; 

ii) adults only; 

iii) the same proportion of children and adults; 

iv) equal numbers of children and adults. 

 

What do you conclude about the potential for an epidemic to occur for each of these 

vaccination scenarios?  

 

You can test your hypotheses by running model 7.1 after incorporating the levels of 

coverage that are associated with these vaccination scenarios (see suggested exercise 

2 for Model 7.1).  
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Chapter 8 

Sexually transmitted infections 

 

8.1 Model 8.1 

8.1.1 Overview of the model 

 

This model describes the short-term dynamics of a non-immunising curable sexually 

transmitted infection, such as gonorrhoea, in a population with homogeneous risk behaviour, 

as described in Section 8.3 of the book.   

 

The key features of the model are: 

i) Closed population (no birth, death, migration). Stable population size 

ii) Single gender 

iii) Assumes homogeneous (same) risk behaviour 

iv) Population size = 20 million 

v) One infectious person is introduced into a population where all the other individuals 

are susceptible 

vi) Mean partner change rate in population (per year) = 2 

vii) Transmission probability per partnership = 0.75 

viii) Duration of infection (years) = 0.167 (2 months) 

 

There are two windows with figures in the model file.  

 

The window with two figures includes: 

Graph 1: This plots the prevalence of infection over time and R0 with the x and y-

axes set so it will reproduce Figure 8.5 in the book. 

Graph 2: This plots the prevalence of infection over time and R0 with the left y-axis 

scale set to between 0 and 1 so shows the infection prevalence clearly as 

the duration of infection or partner change rate is increased. 

 

The other window contains one figure showing a parameter plot of how the endemic 

prevalence and R0 vary as the mean partner change rate is increased from 2 to 10. 
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8.2 Model 8.2 

8.2.1 Overview of the model 
 

This model describes the short-term dynamics of a non-immunising curable sexually 

transmitted infection, such as gonorrhoea, in a population with heterogeneity in risk 

behaviour and proportionate mixing, as described in Section 8.4 of the book.   

 

The key features of the model are: 

1. Closed population (no birth, death, migration). Stable population size 

2. Single gender 

3. Assumes heterogeneous risk behaviour 

4. Assumes proportionate mixing 

5. Population size = 20 million 

6. One infectious person is introduced into a population where all the other individuals 

are susceptible 

7. 2% of population in high activity group 

8. Overall mean partner change rate (per year) = 2, but rate in high activity group 

= 31.4 and rate in low activity group = 1.4 

9. Transmission probability per partnership = 0.75 

10. Duration of infection (years) = 0.167 (2 months) 

 

There are two windows with figures in the model file.  

 

The window with two figures includes: 

Graph 1: This plots the prevalence of infection over time in the low and high activity 

group, and the overall population, reproducing Figure 8.8 (left) in the book. 

Graph 2: This plots the force of infection, or incidence rate over time in the overall 

population, reproducing Figure 8.8 (right) in the book. 

 

The other window contains one figure showing a parameter plot of how the endemic 

prevalence in the low and high activity group, and in the total population varies as the 

difference (heterogeneity) in partner change rate between the two activity groups increases, 

reproducing Figure 8.9 in the book. The figure is actually a mirror image of that shown in 

book, because I could not (easily) work out how to plot it the correct way round (!). 

Suggestions welcome. 
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8.3 Model 8.3 

8.3.1 Overview of the model 
 

This model describes the short-term dynamics of a non-immunising curable sexually 

transmitted infection, such as gonorrhoea, in a population with heterogeneity in risk 

behaviour and variable mixing, as described in Section 8.5 of the book.   

 

The key features of the model are: 

1. Closed population (no birth, death, migration). Stable population size 

2. Single gender 

3. Assumes heterogeneous risk behaviour 

4. Allows ‘with-unlike’ (disassortative), ‘proportionate’, or ‘with-like’ (assortative) 

mixing between activity groups 

5. Population size = 20 million 

6. One infectious person is introduced into a population where all the other individuals 

are susceptible 

7. 2% of population in high activity group.  

8. Overall mean partner change rate (per year) = 2, but rate in high activity group = 31.4 

and rate in low activity group = 1.4 

9. Transmission probability per partnership = 0.75 

10. In default scenario duration of infection (years) = 0.167 (2 months). This can be 

varied to keep R0 constant as the mixing pattern is changed, see below. 

 

Mixing can be varied using Q (after Gupta, Anderson et al., AIDS, 1989), where  

Q < 0 models with-unlike mixing 

Q = 0 models proportionate mixing  

0 < Q ≤ 1 models with-like mixing 

Note, in the examples in the book, to avoid having to alter partner change rates, the 

minimum ‘with-unlike’ mixing level is constrained to be Q = -0.46, see Section 8.5.4 

 

There is one window with one figure and one window with a figure and a table in the model 

file. The window with one figure shows a plot of R0 as the population mixing is varied 

between ‘More with-unlike’ (Q= – 0.46), through proportionate (Q = 0), to purely ‘with-like’ 

mixing (Q = +1). This reproduces the figure shown in Figure 8.13 and shows that as mixing 

becomes more with-like, R0 increases. 

 

The other window with a figure and a table includes: 

Graph 1: shows a plot of overall prevalence of infectious individuals over time. It can 

be used to reproduce Figure 8.14 and show prevalence assuming ‘more 

with-unlike’ (Q = – 0.4), proportionate (Q = 0), or ‘more with-like’ (Q = +0.4) 

mixing between activity groups while keeping R0 constant. To do this change 

Q to equal these values, while ensuring R0 remains = 1.36 by re-setting the 

duration of infection to be D = 0.340, 0.167 and 0.097 years, respectively. 

Graph 2: The table window shows R0, and the number of secondary infections in 

high-activity group members generated by an infected high-activity group 

member (RHH), the number of secondary infections in low-activity group 

members generated by an infected high activity group member (RLH), the 

number of secondary infections in high-activity group members generated 
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by an infected low-activity group member (RHL), and the number of 

secondary infections in low-activity group members generated by an 

infected low-activity group member (RLL). 
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8.4 Model 8.4  

8.4.1 Overview of the model 
 

This model describes the short-term dynamics of a non-immunising curable sexually 

transmitted infection, such as gonorrhoea, in a population with heterogeneity in risk 

behaviour and variable mixing, as described in Section 8.5.7 of the book.   

 

The model is identical to Model 8.3 but it is set up to show the effects of changing the mixing 

pattern between activity groups on equilibrium STI prevalence for a given STI natural history 

and partner change rates. Thus, this might illustrate the possible effects of an intervention 

that changes population mixing patterns, but does not affect rates of partner change or STI 

natural history. 

 

There is one window with a figure and one window with a table in the model file.  

 

The window with a figure shows a parameter plot, on the log10 scale, of the equilibrium 

prevalence in the low and high activity groups, and overall, by mixing pattern for the default 

STI natural history and partner change rates.  By default the model will reproduce Figure 

8.15c, the plot for a STI with a ‘Moderate’ R0 (= 1.36 when proportionate mixing is assumed).  

 

The model can be used to reproduce Figure 8.15a and 8.15b by setting R0 when 

proportional mixing to lower (0.50) and higher (4.00), by setting the duration of infection to be 

0.062 and 0.493 years, respectively. 

 

As for Model 8.3, the window with the table window shows R0, and the number of secondary 

infections in high-activity group members generated by an infected high-activity group 

member (RHH), the number of secondary infections in low-activity group members generated 

by an infected high activity group member (RLH), the number of secondary infections in high-

activity group members generated by an infected low-activity group member (RHL), and the 

number of secondary infections in low-activity group members generated by an infected low-

activity group member (RLL). 
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8.5 Model 8.5 

8.5.1 Overview of the model 
 

This model describes the short-term dynamics of a non-immunising curable sexually 

transmitted infection, such as gonorrhoea, in a population with heterogeneity in risk 

behaviour, variable mixing, and STI screening, as described in Section 8.5.8 of the book.   

 

The model is very similar to Model 8.3 but screening has been implemented very simply by 

adding a term to the equations determining the rate of change of the infectious and 

susceptible individuals in the high and low activity groups, to simulate a higher rate of 

recovery. These two rates are then altered so that the number of screenings is kept constant 

but the screenings are targeted at the high or low activity group, or distributed randomly. 

 

The rates in the two groups are calculated from the number of screens per year, ‘ns’, and 

whether screening will be targeted randomly or at the low or high activity group.   

 

There is one window with a figure and one window with a table in the model file.  

 

The window with a figure shows a parameter plot of the equilibrium STI prevalence in the 

overall population as the number of screenings per year is increased from 0 to 20 million. 

 

By default the model assumes proportionate mixing (ie Q=0) and random targeting.  If you 

run this model you will get the ‘Target randomly’ line of figure Figure 8.16(middle), showing 

the impact on STI prevalence if proportionate mixing is assumed.   

 

To show how much more effective targeting the high activity group would be, replace 
{== To target randomly uncomment this code: } 

y_H = ns/N 

y_L = ns/N 

 

{== To target the high-activity group uncomment this code: } 

;y_H = ns/N_H 

;y_L = 0comment out (insert a ‘;’) the two lines below  

  

With 

 
{== To target randomly uncomment this code: } 

;y_H = ns/N 

;y_L = ns/N 

 

{== To target the high-activity group uncomment this code: } 

y_H = ns/N_H 

y_L = 0  

 

Targeting the low-activity group can be achieved in a similar way. 

 

To reproduce Figure 8.16(left) showing the relative impact if more with-unlike mixing is 

assumed; repeat the three targeting strategies above after setting Q= -0.4 and D = 0.340. 
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To reproduce Figure 8.16(right) showing the relative impact if more with-like mixing is 

assumed; repeat the three targeting strategies above after setting Q= +0.4 and D = 0.097. 

 

As for Model 8.3, the table window shows R0, and the number of secondary infections in 

high-activity group members generated by an infected high-activity group member (RHH), the 

number of secondary infections in low-activity group members generated by an infected high 

activity group member (RLH), the number of secondary infections in high-activity group 

members generated by an infected low-activity group member (RHL), and the number of 

secondary infections in low-activity group members generated by an infected low-activity 

group member (RLL). 
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8.6 Model 8.6 

8.6.1  Overview of the model 
 

This model describes the long-term dynamics of HIV in a population with heterogeneous risk 

behaviour and proportionate mixing, as described in Section 8.8 of the book.   

 

The key features of the model are: 

1. Onset of sexual activity and non-HIV death  

2. Single gender 

3. Population size = 10,000 

4. Assumes heterogeneous risk behaviour 

5. 15% of population in high activity group 

6. Rate of partner change per year in high activity group = 8 and rate in low activity 

group = 0.2 

7. One infectious person is introduced into a population where all the other individuals 

are susceptible 

8. Transmission probability per partnership = 0.05 

9. Duration of sexual activity in absence of HIV (years) = 35  

10. Duration of HIV infectiousness (years) = 9 

11. Duration of AIDS stage in which no sexual activity is assumed (years) = 1 

 

There is one window with four figures and a table in the model file.  

 

Graph 1: This plots the trends in the incidence and prevalence of HIV (left y-axis) and 

cumulative AIDS deaths (right y-axis), to reproduce Figure 8.20a in the book 

Graph 2: This plots the trends in the mean partner change rate in the population to 

reproduce Figure 8.20b in the book 

Graph 3: This plots the trends in the numbers of new HIV infections and deaths of HIV 

infecteds to reproduce Figure 8.20c in the book 

Graph 4: This table is of the trend in the number of HIV infected individuals and can be 

used to estimate the doubling time of the epidemic, see Section 8.8.1.2 

Graph 5: This plots the trends in the numbers of individuals in the low and high activity 

groups and the total population size, showing the impact of the HIV epidemic 
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Chapter 9  

Special topics in infectious disease 
modelling 
 

9.1 Model 9.1 

This will be available in future updates...apologies for any inconvenience!  

 

9.2 Model 9.2 

This will be available in future updates...apologies for any inconvenience!  

 

9.3 Model 9.3 

This will be available in future updates...apologies for any inconvenience!  
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9.4 Model 9.4 

9.4.1 Overview of the model 
 

This model, set up in Berkeley Madonna, describes the long-term dynamics of HIV and a 

cofactor STI in a population with heterogeneous risk behaviour and proportionate mixing, as 

described in Section 9.4 of the book.   

 

The key features of the model are: 

• Onset of sexual activity and non-HIV death  

• Single gender 

• Population size = 10,000 

• Assumes heterogeneous risk behaviour 

• 15% of population in high activity group 

• Rate of partner change per year in high activity group = 8 and rate in low activity 

group = 0.2 

• One HIV infectious person is introduced into a population in year 0 where all the 

other individuals are susceptible to HIV 

• HIV transmission probability per partnership = 0.05 

• Duration of sexual activity in absence of HIV (years) = 35  

• Duration of HIV infectiousness (years) = 9 

• Duration of AIDS stage in which no sexual activity is assumed (years) = 1 

• One cofactor STI infectious person is introduced into a population in year -50 

where all the other individuals are susceptible to the cofactor STI. The cofactor 

STI is introduced 50 years before HIV to allow the cofactor STI to become 

endemic 

• Cofactor STI transmission probability per partnership = 0.80 

• Duration of cofactor STI infectiousness (years) = 0.22 

• Per partnership STI cofactor for HIV acquisition and transmission = 3.1. 

Derived from Hayes et al, J Trop Med Hyg, 1995, see Panel 9.3. 

 

 

There is one window with four figures and one table in the model file.  

 

1. Graph 1: This plots the trends in the incidence and prevalence of HIV (left y-axis) and 

cumulative AIDS deaths (right y-axis), to reproduce Figure 9.9a and Figure 9.9b in 

the book. By default is shows the more rapid spread of HIV in the presence of the 

STI cofactor to reproduce Figure 9.9b.  To remove the effect of the STI cofactor, set 

the per partnership STI cofactor for HIV acquisition and transmission = 1. This will 

now reproduce Figure 9.9a. 

2. Graph 2: This plots the trends in the prevalence of the cofactor STI, to reproduce 

Figure 9.9c in the book. 

3. Graph 3: This plots the trends in the numbers of individuals in the low and high 

activity groups and the total population size, showing the impact of the HIV epidemic  

4. Graph 4: This plots the trends in the numbers of new HIV infections and deaths of 

HIV infecteds 

5. Graph 5: This table is of the trend in the number of HIV infected individuals and can 

be used to estimate the doubling time of the epidemic, see Section 9.4.1 of the book. 
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Appendix 

10.1 Estimating parameters by fitting models to data in 

Excel 

10.1.1 Estimating a single parameter  

 

Excel has an inbuilt function (“Solver”) which allows users to estimate model parameters by 

fitting model predictions to data.  Solver is used with model 4.2 to estimate the unknown 

parameters, such as R0.  It is also used with the catalytic models in chapter 5 to estimate the 

force of infection for the catalytic model which leads to best fits to the data in the yellow cells.  

The steps for using Solver are as follows: 

 

Step1:  Click on the Data option on the main menu and select the Solver option.  If the 

Solver option is not available, click on the Microsoft Office Button , and then click on 

“Excel Options”. Then click on “Add-Ins”, and, in the “Manage” box, select “Excel Add-ins”, 

before clicking on “Go”.  In the “Add-Ins available” box, check the “Solver Add-in” box, and 

then click on the OK button. 

 

Step 2:  If there is a security warning below the ribbon stating “Macros have been disabled”, 

click on the “Options” button next to this warning and then select the “Enable this content” 

option, before clicking on OK. 

 

Step 3:  If you have not yet done so, select the Solver option.   

 

You should then see a dialogue box in which you specify which (Target) cell should be 

minimized, maximized or set equal to some value, and what cell should be changed in order 

to attain this minimum etc.   

 

Step 4:  

a) Set the Target cell to point to the deviance.  For model 4.2, the deviance is located in cell 

D28; for the catalytic models in chapter 5, it is in cell D18.   

 

b) Specify that the deviance should be minimized by selecting the “Min” option under the 

“Equal to” option. 

 

c) Specify that the parameter that you’re estimating should be changed.  For model 4.2, 

you might type in R0 or “F19” (without the inverted commas) in the “By Changing Cells” 

box.  For models 5.2 or 5.3 you would specify that the force of infection should be 

changed by typing “D14” or the cell name (without the inverted commas) in the “By 

Changing Cells” box.   

 

d) Click on the “Solve” button. 
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Solver will then try different values for the parameter that you’re estimating until it finds the 

one which leads to the smallest deviance.  If it succeeds, a box will come up informing you 

that Solver has found a solution and asking you to click on OK to accept the value.   

 

If Solver fails, this may be due to a mistake in the expression for the model prediction, or 

because the search for the best-fitting value started too far from the best value, which made 

it too difficult for Solver to find it.  The solution to this problem is to start Solver after having 

changed the value for the parameter being fitted (e.g. foi_pyr_mumps if you’re fitting the 

force of infection for mumps using file model 5.2) to a value which, by eye, looks as though it 

gives a good fit to the data. 

 

As is the case for most fitting routines (see also section 10.2.3), the best-fitting parameter 

values usually depend on the starting values used when fitting model predictions to data.  

Several different starting values should be used and the overall best-fitting values should be 

taken as those which result in the smallest overall value for the goodness of fit statistic. 

 

 

10.1.2 Estimating two or more parameters (models 4.2, 5.3 and 5.4) 

The methods are identical to those described above for estimating a single parameter, 

except that step 4c has to be changed as follows: 

 

Specify that the parameters that you’re estimating should be changed.  For model 4.2, you 

might type in “R0,prop_reported”,  or “F19,F21” (without the inverted commas) in the “By 

Changing Cells” box, if you are estimating R0 and the proportion of infectious persons who 

were reported.   If you’re estimating the force of infection among those aged <15 and ≥15 

years in model 5.4, you would type “D14:D15” or the cell names, separated by a comma (i.e. 

“foi_u15,foi_g15” without the inverted commas).   

 

 

10.1.3 Calculating the 95% confidence interval for a single parameter (models 

5.2 and 5.3) 

 

A macro (called maxlhood01) has been set up to calculate the 95% confidence interval on 

the force of infection estimate.  This macro refers to specific locations in the spreadsheet 

where it expects to find the force of infection and the deviance, and it will not work if the cell 

locations are changed from their original settings; also, the macro only works if only one 

parameter is being estimated.   

 

10.1.3.1 Calling the macro 

The macro can be called by one of the following two ways: 

a) (Models 5.2 and 5.3 only) Click on the large grey button in cell G23.  If it is not visible, 

click on the   button next to row 29.   

b) Select the View option on the main menu.  Click on the macro button, selecting the 

“View macros” option and choose the maxlhood01 option.  
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Note that for this macro to run, you need to have enabled the macros in the spreadsheet.  

You will have done this already if you followed the steps in section 10.1.1 (see step 2).  If 

you get a warning message about the macro not being enabled, enable the macro by 

following step 2 in section 10.1.1.  If you can’t see the Security warning mentioned in that 

step, you may need to close and reopen the spreadsheet again in order to see it.  

 

The macro uses Solver and, if the macro is able to find Solver (see section 10.1.6.1 if it 

cannot do so), a dialogue box will appear when Solver finds the best-fitting force of infection 

and the upper and lower confidence limit.  You will need to click on OK whenever this occurs 

to allow the macro to continue to work.  

 

 

10.1.3.2 Method used by the macro  

The mechanics of how the macro maxlhood works is as follows: 

 

1. Solver is first used to fit the expression for the proportion (ever) infected to the 

proportion seropositive by minimizing the log-likelihood deviance.  The best-fitting 

value for the force of infection is then pasted into cell C25 and the deviance that 

results from this force of infection (referred to as the “optimal deviance”) is pasted 

into cell C27. 

 

2. The upper 95% confidence limit on the force of infection is then obtained as follows: 

a. The macro sets the value for the force of infection in cell D14 to be slightly 

above the best-fitting value.   

b. Solver then looks for a value for the force of infection which leads to a 

deviance which differs from optimal deviance by 3.84. Note that the difference 

between the deviance resulting from the force of infection in cell D14 and the 

optimal deviance is held in cell D21.   

c. Once it finds this value (which equals the upper limit of the 95% confidence 

interval), it is pasted into cell E25. 

3. The lower 95% confidence limit is calculated in a similar way, except the value for the 

force of infection (in step a) is set to be slightly lower than the best-fitting value. 

 

4. The best-fitting value for the force of infection is copied back from cell C25 into cell 

D14. 

 

You can also view the code for the macro by clicking on the macro button from the View tab, 

clicking on the macro name (maxlhood01) and then selecting the Edit button.   

 

 

10.1.4 Calculating 95% confidence intervals for two parameters (model 5.4) 

 

A macro (called maxlhood02) has been set up in model 5.4 which calculates 95% 

confidence intervals on two parameters.  As for the macro maxlhood01, it points to specific 

locations in the spreadsheet where it expects to find the parameters (in this case, foi_u15 

and foi_g15) and the deviance.  Consequently the macro will not work if the cell locations are 

changed from their original settings; also it only works if two parameters are being estimated.   
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The method for calling the macro is identical to that described for macro maxlhood01 (see 

section 10.1.3.1).  The steps for calculating the 95% confidence intervals are similar to those 

described for maxlhood01: 

 

1. Solver is first used to fit the expression for the age-specific proportion (ever) infected 

to the age-specific proportion seropositive by minimizing the log-likelihood deviance.  

The resulting best-fitting values for the force of infection among those aged <15 and 

≥15 years are then pasted into cells C25 and C26.  The deviance that results from 

these values (referred to as the optimal deviance) is pasted into cell C27. 

 

2. The upper 95% confidence limit on the force of infection for those aged <15 years is 

then obtained as follows: 

a. The macro sets the value for foi_u15 in cell D14 to be slightly above the best-

fitting value, with foi_g15 fixed at the best-fitting value.   

b. Solver then looks for a value for foi_u15 which leads to a deviance which 

differs from optimal deviance by 3.84. Note that cell D21 holds the difference 

between the deviance resulting from the force of infection in cell D14 and the 

optimal deviance.   

c. Once it finds this value (which equals the upper limit of the 95% confidence 

interval), it is pasted into cell E25. 

 

3. The lower 95% confidence limit is calculated similarly, except the value for foi_u15 (in 

step a) is set to be slightly above the best-fitting value.  The lowest 95% confidence 

limit is pasted into cell D25. 

 

4. The value for the force of infection among those aged <15 years in cell D14 is then 

reset to equal the best-fitting value (currently in cell C25).   

 

5. The upper and lower 95% confidence limits for foi_g15 are then calculated using the 

method described in step 2, but with foi_u15 fixed at its best-fitting value.  The upper 

and lower confidence limits are pasted into cells E26 and D26 respectively. 

 

6. The best-fitting values for the force of infection are copied back from cell C25 and 

C26 into cells D14 and D15 respectively. 

 

 

10.1.5 Calculating 95% confidence intervals for three parameters (model 4.2) 

 

A macro (called maxlhood03) has been set up in model 4.2 which calculates 95% 

confidence intervals on three parameters.  As for the macros maxlhood01 and maxlhood02, 

it points to specific locations in the spreadsheet where it expects to find the parameters (in 

this case, R0, the proportion of infectious persons who are reported as cases, and the initial 

number of infectious persons) and the deviance.  Consequently the macro will not work if the 

cell locations are changed from their original settings; also it only works if two parameters 

are being estimated.   

 

The method for using the macro is similar to that described for macro maxlhood01 (see 

section 10.1.3.1).  The macro can be called by one of the following two ways: 
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a) Click on the large grey button in cell G33.  If it is not visible, click on the   button 

next to row 39.   

b) Select the View option on the main menu.  Click on the macro button, selecting the 

“View macros” option and choose the maxlhood03 option.  

 

Note that for this macro to run, you need to have enabled the macros in the spreadsheet.  

You will have done this already if you followed the steps in section 10.1.1 (see step 2).  If 

you get a warning message about the macro not being enabled, enable the macro by 

following step 2 in section 10.1.1.  If you can’t see the Security warning mentioned in that 

step, you may need to close and reopen the spreadsheet again in order to see it.  

 

The macro uses Solver and, if the macro is able to find Solver (see section 10.1.6.1 if it 

cannot do so), a dialogue box will appear when Solver finds a best-fitting value and the 

upper and lower confidence limit.  You will need to click on OK whenever this occurs to allow 

the macro to continue to work.  

 

 

The steps for calculating the 95% confidence intervals are similar to those described for 

maxlhood01 and maxlhood02: 

 

1. Solver is first used to fit model predictions of the number of cases reported each 

week to the observed data.  The resulting best-fitting values for R0, the proportion of 

infectious persons who are reported and the initial numbers of infectious persons are 

then pasted into cells C34:C36.  The deviance that results from these values 

(referred to as the optimal deviance) is pasted into cell C38. 

 

2. The upper 95% confidence limit on R0 is then obtained as follows: 

a. The macro sets the value for R0 in cell F19 to be slightly above the best-fitting 

value, with the other parameters fixed at the best-fitting value.   

b. Solver then looks for a value for R0 which leads to a deviance which differs 

from optimal deviance by 3.84. Note that cell D31 holds the difference 

between the deviance resulting from the R0 in cell F19 and the optimal 

deviance.   

c. Once it finds this value (which equals the upper limit of the 95% confidence 

interval), it is pasted into cell E35. 

 

3. The lower 95% confidence limit is calculated in a similar way to the upper 95% 

confidence limit, except the value for R0 (in step 2a) is set to be slightly below the 

best-fitting value.  The lowest 95% confidence limit is pasted into cell D35. 

 

4. The values for R0 and the other parameters are then reset to equal the best-fitting 

values (currently in cell C35:C37).   

 

5. The upper and lower 95% confidence limits for the proportion of infectious persons 

who are reported are then calculated using the method described in step 2, but with 

the other parameters (R0 and initial numbers of infectious persons fixed at their best-

fitting values.  The upper and lower confidence limits are pasted into cells E36 and 

D36 respectively. 
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6. The values for all the parameters are then reset to equal the best-fitting values 

(currently in cell C35:C37).   

 

7. The upper and lower 95% confidence limits for the initial numbers of infectious 

persons are then calculated using the method described in step 2, but with the other 

parameters (R0 and proportion of infectious persons who are reported fixed at their 

best-fitting values.  The upper and lower confidence limits are pasted into cells E37 

and D37 respectively. 

 

 

10.1.6 Known issues with the confidence interval macros... 

10.1.6.1 Locating Solver 

 

The macros sometime have problems with locating Solver.  If, when running the macro, the 

macro opens up a window with the macro code and with the Word "Solver" highlighted, and 

a dialogue box appears saying that there is a compile error and that the project or library 

cannot be found, try the following steps: 

a) Close the dialogue box and click on the reset button  in the window in which the 

macro has paused to stop the macro.  This button resembles a blue box on a grey 

background. 

b) Select the tools option from the main menu and select the References option, 

followed by the Available references option.  Deselect the box next to 

Missing:Solver.XLA, and click on the box next to "SOLVER". 

After exiting the dialogue box, return to the main spreadsheet and run the macro as before. 
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10.2 Estimating parameters by fitting models to data in 

Berkeley Madonna 

 

There are two main ways of fitting models to data in Berkeley Madonna, namely using the 

Curve Fit and Optimize functions. 

 

10.2.1 The curve fit function 

10.2.1.1 Using the curve fit function 

The easiest method of fitting models to data in Berkeley Madonna is to use the “Curve fit” 

function.  This function can be used with Model 7.1 to fit model predictions of the cumulative 

numbers of reported young and old cases against the corresponding observed data to 

estimate the unknown parameters, namely the initial numbers of infectious persons 

(Infous_y0 and Infous_o0), the contact parameters (b1 and b2) and the proportion of 

infectious persons that were reported to the GP practice (frac_rep).  The steps are as 

follows:  

 

1. Choose the Curve fit option from the Parameter option on the main menu. 

 

2. Select the parameters that you would like to estimate by double clicking on them in 

the list in the “Available” box.  They should then appear in the “Parameters” box.   

 

3. Click on each parameter box and in the boxes to right of the box, specify the 

minimum and maximum possible values for the parameters, together with the value 

for the first and second guesses. 

 

4. In the lower half of the box, select the variables and the data to which you wish to fit 

the model.  In the case of Model 7.1, we wish to fit the variable Cum_reported_y to 

the data which are stored in #cum_rep_y and the variable Cum_reported_o to the 

data which are stored in #cum_rep_o.  This can be done as follows: 

 

a. Click on the “Multiple fits box”. 

 

b. Select Cum_reported_y from the drop-down list labelled “fit variable” and 

select “#cum_rep_y” from the drop down list labelled “To dataset” and then 

click on the “Add button”. Cum_reported_y and #cum_rep_y should now 

appear in the box under “Multiple fits” 

 

c. Do the same for “Cum_reported_o” and “#cum_rep_o”. 

 

5. To fit the model, click on the OK button. 

 

Berkeley Madonna will then fit model predictions of the cumulative numbers of young and 

old cases to the observed data.  The value for Berkeley Madonna’s inbuilt goodness of fit 

statistic will appear once the fitting has finished if you had previously selected the option 

“Pause after Curve fit”.  This option can be found through the “Preferences” option from the 

“Edit” option in the main menu.  See section 10.2.3 for further important general 

considerations when fitting models. 
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The best-fitting parameter values can be seen either in the parameters panel or on the 

sliders.  In general, the best-fitting values will depend on the values taken for guess 1 and 

guess 2 for the parameters, although they should all lead to a similar goodness of fit, and 

similar parameter values.  The overall best-fitting values should be taken as those which 

result in the smallest overall value for the goodness of fit statistic. 

 

 

10.2.1.2 Disadvantages of the curve fit function 
 

Berkeley Madonna’s curve fitting option is relatively straightforward to use.  However, its 

main disadvantage is that it is not designed to work easily with predictions of the number of 

new infections or cases per day or per week and we have to use it to fit to the cumulative 

number of cases and by default, all of the datapoints are given equal weight in the fitting.  

This means that the curve-fit function will preferentially try to find parameter values which 

lead to a good fit to the data on the cumulative numbers of cases towards the end of the 

outbreak, since these are the largest, and therefore potentially contribute most to the 

goodness of fit statistic. 

 

 

10.2.2 Fitting models using the Optimize function 

  

To overcome the problems with Berkeley Madonna’s curve fit function (see section 10.2.1.2), 

we can use Berkeley Madonna’s optimize function to fit model predictions of the numbers of 

new infections or cases per week to observed data.  Considering model 7.1, we can do this 

by setting up variables which aggregate output on the daily numbers of cases into the 

weekly numbers of cases (see the code in Model 7.2 for calculating wkly_rep_y and 

wkly_rep_o in section on “AGGREGATING OUTPUT AND FITTING MODEL 

PREDICTIONS”).   We then need to set up an appropriate goodness of fit statistic in 

Berkeley Madonna and tell the optimize function to minimize it by identifying parameter 

values that we are interested in.   

 

The steps for using the Optimize function are as follows: 

 

1. Choose the Optimize option from the Parameter option on the main menu. 

 

2. Select the parameters that you would like to estimate by double clicking on them in 

the list in the “Available” box.  They should then appear in the “Parameters” box.   

 

3. Click on each parameter box and in the boxes to right of the box, specify the 

minimum and maximum possible values for the parameters, together with the value 

for the first and second guesses. 

 

4. In the box labelled “Minimize Expression”, type in the name of the expression for the 

goodness of fit statistic that you wish to minimize.  In model 7.1, this can be either 

“ssq” or “minus_llhood”.  

 

5. To fit the model, click on the OK button. 
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Berkeley Madonna then fits model predictions to the observed data to estimate the unknown 

parameters.  As for the “Curve fit” function, Berkeley Madonna will display the value for the 

goodness of fit statistic if the option “Pause after Curve fit” has been selected before the start 

of the fitting.  This option can be found through the “Preferences” option from the “Edit” 

option in the main menu.  Similarly, the best-fitting parameter values can be seen in the 

parameters panel or in the sliders. 

 

10.2.3 General issues when fitting models using Berkeley Madonna 
 

In general, the best-fitting values obtained using the optimize or curve fit options depend on 

the values for guesses 1 and 2 for the parameters and on the goodness of fit statistic that is 

used.  However, the best-fitting values are usually all fairly similar and they should all lead to 

a similar goodness of fit.  In any case, when trying to estimate unknown parameter values, 

several different values for guesses 1 and 2 should be used and the overall best-fitting 

values for the parameters should be taken as those which result in the smallest overall value 

for the goodness of fit statistic. 

 

As a general rule, it is also advisable to set up the same model in another package (e.g. 

Excel, Matlab etc) and/or set up the model using a programming language which calls up 

tested fitting routines (such as those provided in the Numerical Recipes book) to help identify 

any errors in the code.  
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Solutions to suggested exercises 

Exercises for Model 2.1 
 

1. a) The total population size is given by the sum of the number of susceptible, pre-

infectious, infectious and immune individuals.  This remains unchanged over time, with the 

value equal to the value for tot_popn (100,000 individuals).   

 

b) Figure O2.1 shows the plot that you should have obtained, comparing the numbers of new 

infections per day and the number of new infectious persons per day.  The Excel expression 

for day 1 is given by =beta*B55*D55, i.e. the Excel equivalent of βStIt,  The peak in the 

number of new infections per day occurs approximately two days before that in the number 

of new infectious persons per day, i.e. on day 56, as compared with day 58.  You would 

expect the number of new infections per day to peak roughly two days before the peak in the 

number of new infectious persons per day, given that newly infected individuals are 

assumed to become infectious after an average period of two days. 

 

 
Figure O2.1: Comparison between predictions of the number of new infections per day and 

the number of new infectious persons per day, predicted using Model 2.1.  One infectious 

person is introduced into the population comprising 99,999 susceptible individuals at the 

start, R0=2, pre-infectious period=infectious period =2 days, no individuals are assumed to 

be born into or to die from the population.  The time step size is taken to be 1 day. 

 

c) Cells D55:D255 hold the number of infectious persons at any given time until the 200th 

day (using a 1 day time step).  They are approximately two-fold greater than the number of 

new infectious persons per day, as illustrated in Figure O2.2.  This is to be expected, given 

that prevalence  incidence × duration of the condition.  Therefore, the number of infectious 
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persons at any given time equals the number of new infectious persons per day ×duration of 

infectiousness (=2 days). 

 

 
Figure O2.2: Comparison between predictions of the number of new infectious persons per 

day, and the total number of infectious persons, predicted using Model 2.1.  See the caption 

to Figure O2.1 for further details.  

 

2 a) and b) The following are the expressions that you should have set up for day 1 in part b)  

- see also “Model 2.1a.xlsx”: 

 

Number susceptible:     =L55-beta*M55*L55 

Number infectious:      =M55+L55*M55*beta-M55*rec_rate 

Number immune:      =N55+M55*rec_rate 

Number of new infectious persons per day:  =beta*L55*M55 

 

Figure O2.3 compares predictions of the number of immune individuals and the number of 

new infectious persons per day obtained using the SEIR model (from question 1) and the 

SIR model.   

 
Figure O2.3: Comparison between predictions of the number of immune individuals and the 

new infectious persons with influenza per day obtained using an SEIR model and an SIR 

model.  See the caption to Figure O2.1 for further details.  
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The SIR model predicts that the number of new infectious persons per day increases more 

rapidly than does the SEIR model. This is to be expected since the SIR model assumes that 

individuals are infectious immediately after infection, whereas the SEIR model assumes that, 

on average, individuals are infectious 2 days after infection.   

 

Notice that the number of infectious persons peaks once a sufficient proportion of 

susceptible individuals has been depleted.  For both models, this occurs once about 50% of 

the population is immune. Consequently, the peak predicted by the SIR model occurs 

sooner than that predicted by the SEIR model.  For example, the susceptible population is 

depleted more rapidly in the SIR model than in the SEIR model, and therefore it reaches the 

threshold required for the epidemic to peak more quickly than does the SEIR model.  These 

issues are discussed in further detail in chapter 4 of the book.  

 

The number of immune individuals predicted by the end of the epidemic by the SIR model is 

slightly higher than that predicted by the SEIR model.  In fact, they should be very similar.  

Differences between the number of immune individuals predicted by the two models are 

largely due to rounding error – you should find that the numbers are almost identical if the 

time step size is very small (e.g. 0.001 days).  Issues relating to the time step are discussed 

in chapter 3 of the book. 
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Exercises for Model 3.1 
 

1. b) Predictions obtained using a time step of 0.01 days are very similar to those obtained 

using a time step of 0.05 days for both the measles and influenza models.  This is to be 

expected, given that predictions obtained using a time step of 0.1 and 0.05 days are already 

similar.  Therefore reducing the time step size further should not influence predictions any 

further. 

 

c) Table O3.1 shows the number of immune individuals predicted at the end of the epidemic 

for the measles and influenza models.  As might be expected (given your observations of the 

number of infectious individuals during the course of the epidemic for different time step 

sizes), this is relatively insensitive to the time step size if the time step is relatively small 

(<0.1 days).   

 

For the measles model, the number of immune individuals predicted at the end of the 

epidemic when the time step is 3 or more days is unrealistic, as it exceeds the total 

population size of 100,000.  This highlights the importance of using a suitably small time step 

when setting up models using difference equations.  However, note that even in these 

situations, the population size as given by the sum of the number of susceptible, pre-

infectious, infectious and immune individuals (the values given in the lilac cells in column I) 

still sum to 100,000.   

 

 

Table O3.1: Summary of the epidemic size for measles and influenza (as given by the 

number of immune individuals at the end of the epidemic) obtained using Model 3.1 for 

different values of the time step size.  The last two columns provide the percentage 

difference between the estimate obtained using a given step size and that obtained using a 

step size of 0.01 days. 

Time 

step 

(days) 

Number of immune 

individuals at the end of 

the epidemic 

% difference from the 

estimate obtained using 

a time step of 0.01 days 

Influenza Measles Influenza Measles 

0.01 79676.7 99898.3 -- -- 

0.05 79751 99999.8 0.09 0.10 

0.1 79821 99999.8 0.18 0.10 

0.5 80396.1 99999.9 0.90 0.10 

1 81157.6 100000 1.86 0.10 

2 86871.4 100000 9.03 0.10 

3 -- 100000.3 -- 0.10 

4 -- 100454.7 -- 0.56 

5 -- -- -- -- 
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Exercises for Model 3.2 
 

1.  Since the per capita birth rate is assumed to equal the per capita death rate, and all 

individuals are assumed to experience the same death rate, you would expect the population 

size to remain constant over time, with 100,000 persons.  You should find that this is indeed 

the case when you sum up the number of susceptible, pre-infectious, infectious and immune 

individuals at each time step. 

 

 

2.a) The peaks and troughs in rubella incidence occur less frequently than those in measles 

incidence, and it takes longer for the incidence to reach equilibrium following the introduction 

of one infectious person with rubella into a totally susceptible population than it does 

following the introduction of one infectious person with measles.  This might be expected 

given that the average pre-infectious and infectious periods for rubella (and therefore the 

serial interval) are longer than those for measles.  These cycles are described in further 

detail in chapter 4. 

 

b) To speed up how quickly the model reaches equilibrium, one approach would be to 

increase the time step size.  However, this may affect the accuracy of the model, depending 

on the amount by which the step size increases. 

 

Another possible approach would be to set the initial numbers of susceptible, infectious, and 

immune individuals to values which differ slightly from the equilibrium values.  For example, 

we could set the number of immune individuals at the start to equal 80000, and set the 

number of infectious or susceptible individuals to equal 1 and tot_popn-1-80000 respectively.  

In this situation, you should find that the cycles in rubella incidence establish themselves 

more quickly than in the situation when the population is assumed to be totally susceptible at 

the start. 

 

As discussed in chapter 4, the equilibrium values for the number of susceptible and immune 

individuals in the absence of vaccination are given by tot_popn/R0 and tot_popn×(1-1/R0) 

respectively.  Substituting for tot_popn=100000 and R0=7 into this equation leads to 

equilibrium numbers of susceptible and immune individuals of about 14283 and 85714 

respectively.   
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Exercises for Model 4.2 
 

1 a) If R0 is assumed to equal 2.1, then model predictions of the number of new reported 

cases underestimate the observed data particularly around the peak of the epidemic.  To 

improve the fit of model predictions to the data you would need to increase the value for R0, 

if the other parameters are left unchanged.  

 

b) If you estimate R0 by fitting model predictions to the data using Solver, you would get a 

values for R0 of about 2.4, which should be consistent with your answer to question 1a). 

 

c) To improve the model fit, you might want to change the assumed value for the number of 

infectious persons at the start, the proportion of persons who are reported, the proportion 

immune at the start and the values for the pre-infectious and infectious periods, as none of 

these statistics are known reliably. 

 

 

3 a) If you reduce the average pre-infectious and infectious periods to both equal 1.5 days 

without changing anything else, you should notice that the predicted numbers of reported 

cases begin to increase earlier than when the average pre-infectious and infectious periods 

are assumed to equal 2 days.  This follows from the fact that, if the pre-infectious period is 

1.5 days, individuals become infectious sooner than when the pre-infectious period is 

assumed to be 2 days.  

 

For model predictions to match the data assuming that the pre-infectious and infectious 

periods are 1.5 days, you would therefore need to assume that infectious persons are less 

infectious (i.e. R0 should be reduced) than when the pre-infectious and infectious periods are 

2 days, since this will slow the rate at which new infectious persons appear in the population. 

 

This hypothesis is confirmed in Table O.4.1, which  summarizes the best-fitting parameter 

values obtained by fitting the model to the data assuming that the pre-infectious and 

infectious periods were 1.5 days.  Specifically, the best-fitting value for R0 is about 2.2, which 

is lower than that obtained assuming a pre-infectious period of about 2 days (2.6).   

 

 

Table O.4.1:  Summary of the best-fitting parameter values obtained by fitting model 4.2 to 

the Cumberland data, using the macro maxlhood03, assuming that the pre-infectious and 

infectious periods are both 1.5 days. 

Parameter Estimate (95% confidence 

interval) 

R0 2.24 (2.23,2.25) 

Proportion of infectious persons who are 

reported as cases 0.9 (0.86,0.94) 

Initial number of infectious persons 0.59 (0.55,0.63) 

Deviance 153 (on 10 degrees of 

freedom) 
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3b) If no individuals are assumed to be immune at the start, then the model predicts that the 

number of cases should increase more rapidly at the start than if the proportion of the 

population that is assumed to be immune at the start equals 0.3.   

 

To think about how the parameters considered would need to change in order for model 

predictions to match the data, you may first want to consider the following issues: 

 

i) What is the net reproduction number at the start of the epidemic?  You might expect 

that the net reproduction number at the start should be similar for different best-fitting 

models obtained assuming different values for the proportion immune at the start.   

 

For the existing assumptions in the model, 70% of the population is assumed to be 

susceptible at the start. If the best-fitting value for R0 is 2.57, this means that the net 

reproduction number at the start must equal 2.57×0.7=1.8. If we now change the 

model to assume that no individuals are immune initially, then for the net 

reproduction number to equal 1.8 at the start, the basic reproduction number would 

have to equal 1.8.  You might therefore expect that if you refit the model assuming 

that no one is immune at the start, then the best-fitting value for R0 will be about 1.8. 

 

ii) How do the three parameters being estimated affect the epidemic curve? You should 

notice that, of the three parameters considered, R0 has a bigger effect on the shape 

of the epidemic curve than the other two parameters.  For example, the initial number 

of infectious persons mainly influences the timing of the peak epidemic, whereas the 

proportion of infectious persons who are reported influences the number of cases 

each week, without greatly affecting the general shape.  The extent to which the 

proportion of infectious persons who are reported and the initial numbers of infectious 

persons would need to change in order for model predictions to match the data is 

difficult to predict. 

 

You should have obtained the best-fitting values shown in Table O.4.2 after refitting the 

model assuming that no individuals are immune at the start.  As hypothesised, the value of 

R0 is indeed about 1.8.  

 

Table O.4.2: Summary of the best-fitting parameter values obtained by fitting model 4.2 to 

the Cumberland data, using the macro maxlhood03, assuming that the pre-infectious and 

infectious periods are both 2 days and no individuals are immune at the start 

Parameter Estimate (95% confidence 

interval) 

R0 1.8 (1.79,1.81) 

Proportion of infectious persons who are 

reported as cases 0.54 (0.51,0.56) 

Initial number of infectious persons 1.14 (1.06,1.23) 

Deviance 146 (10 degrees of freedom) 

 

 

4.  In total, 2085 cases were reported during the epidemic in Cumberland.  If only 90% of the 

symptomatic persons were reported, then the number of symptomatic persons in the 

population would have been 2085/0.9 = 2317. 
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If we use the best-fitting value for prop_reported that was obtained assuming that the pre-

infectious and infectious periods were 2 days (i.e. 77%), then we can estimate that the total 

number of persons who had been infectious in the population during the epidemic would 

have been 2085/0.77 = 2606. 

 

The proportion of infectious persons who were symptomatic can then be estimated as the 

number of symptomatic cases in the population divided by the total number of infectious 

persons in the population, i.e. 2317/2606=0.89.  This calculation assumes that all of those 

who were symptomatic were infectious, which is not necessarily the case! 

 

If we use the best-fitting value for prop_reported obtained assuming that the pre-infectious 

and infectious periods were both 1.5 days (i.e. 90%), then we would have estimated that 

100% of those infectious would have been symptomatic. 
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Exercises for Model 4.3 
 

1.  The values for Rn when the daily number of new infectious persons is increasing, 

decreasing, the proportion of the population that is susceptible or immune should be as 

follows:  

 

Number of new 

infectious persons 

per day 

Rn Proportion susceptible Proportion immune 

Increasing >1 >0.07  <0.93  

Decreasing <1 <0.07 >0.93  

At a peak or a trough 

(“constant”)  

1 ~0.07 ~0.93 

 

0.07 is approximately equal to the epidemic threshold (1/R0), if R0 equals 13; 0.93 is 

approximately equal to the herd immunity threshold (1-1/R0). 

 

 

2. Whilst the number of new infectious persons is above the number of births per day, the 

proportion of the population that is susceptible is decreasing; whilst the number of new 

infectious persons per day is below the number of births per day, the proportion of the 

population that is susceptible is increasing.  The explanation for this is provided on page 87 

of the book.  

 

 

3.  i) and ii) Following the logic on page 93 of the book, you would expect the inter-epidemic 

period to be shortest for measles since its basic reproduction number is higher than that of 

the infections listed in the table.  Conversely, the inter-epidemic period for smallpox should 

be the longest, since its basic reproduction number is the smallest.  However, there is much 

variation in the basic reproduction number for varicella, and, plausibly, its inter-epidemic 

period could be longer than that for smallpox. 

 

iii)  The inter-epidemic periods are predicted to be as follows:  

 

 Pre-infectious 

period (days)(D’) 

Infectious 

period (days) 

(D) 

 

R0 

Inter-epidemic (years) period 

predicted by using 

Model* Equation 4.31 

Measles 8 7 12 3.3 3.2 

18 2.5 2.6 

Varicella 14 7 3 ~10 8.9 

10 4 4.2 

17 3.3 3.2 

Smallpox 14 21 5 ~9 8.1 

7 6.7 6.6 

Rubella  10 11 6 ~5 5.6 

7 5 5.1 

* Calculated by counting the number of cycles occurring during a 10 year period once the 

cycles appear to occur at regular have stabilized and then dividing 10 by this number.  Note 

that for low values of R0, the value for STOPTIME in the model needs to be extended in 

order to see regular cycles in incidence. 
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Estimates of the inter-epidemic period obtained using the two methods are reasonably 

consistent.  Those for measles, smallpox and rubella are also consistent with the data 

plotted in Figure 4.16 of the book.  The data for varicella are compatible with estimates 

obtained assuming a basic reproduction number of 10.  However, note that estimates of the 

inter-epidemic period obtained using both the model and equation 4.31 are based on simple 

assumptions (random mixing, average life expectancy of 70 years).  
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Exercises for Model 4.4 
 

1. b) An epidemic occurs approximately every two years, i.e. the inter-epidemic period is 2 

years. 

 

c) If the number of cases in the population is at a peak at time t, then Ct+1=Ct.  If this occurs 

at time t=0, then C1=C0.  Substituting for C1=C0 into the equation C1 = kS0C0, we obtain the 

result: 

C0 = kS0C0 

 

Dividing both sides of this equation by C0, we obtain the result:  

1 = kS0 

 

After rearranging this equation, we obtain our intended result that: 

k = 1/S0 

 

d) The basic reproduction number can be calculated using the expression kN, where N is the 

population size.  This equation can be derived from the equation R0=βND, that is discussed 

in chapter 2 of the book.   

 

For example, as discussed in Panel 4.4, k is interpretable as the fraction of all contacts (i.e., 

occurring over the entire infectious period) between a susceptible person and a case which 

result in the susceptible person becoming a case.  k/D should therefore be approximately 

equal to β, which is defined as the rate at which two specific individuals come into effective 

contact per unit time.  Substituting for β= k/D into the equation R0=βND leads to the equation 

R0=kN.  Substituting for N=2 million and k=6.67×10-6 per serial interval into this equation 

implies that R013. 

 

 

e) To adapt the model to describe the transmission of rubella, it is necessary to change the 

duration of the serial interval to 3 weeks, as this will then automatically update the number of 

births per time step.  The value for k also needs to be changed, depending on whether R0 is 

assumed to be identical to that for measles.  In the absence of further information, the 

number of cases at a peak can be kept to be identical to that for measles.  

 

Considering part i), if R0 for rubella is assumed to be identical to that for measles, then the 

values for k for the measles and rubella models are identical.  For example, rearranging the 

equation R0=kN (see part d)), leads to the result k=R0/N.  Since R0 for rubella is assumed to 

equal that for measles, this equation implies that k for measles and rubella must also be 

identical.   

 

Considering part ii), if R0 is assumed to be 10, then using equation k=R0/N implies that 

k=10/2000000 = 5×10-6 per serial interval.  Since the value for k changes, the value for S0 

must also change.  It can be calculated using the equation S0=1/k, which is obtained after 

rearranging the equation k=1/S0 (see part c)).  Substituting for k=5×10-6 per serial interval 

into this equation, we obtain the result that S0 must equal 200,000.   

 

Figure O.4.1 summarizes predictions of the number of cases of rubella per serial interval 

obtained assuming R0=13 and 10, showing that the inter-epidemic period is about 2.5 and 3 
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years for these assumptions respectively.  As might be expected, the number of susceptible 

individuals is lower when R0 is assumed to equal 13, than in the situation when it is assumed 

to equal 10.  

 

 
Figure O.4.1: Predictions of the number of susceptibles and the numbers of rubella cases 

per serial interval obtained using Model 4.4, assuming that R0 is either 13 or 10.  
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Exercises for Model 4.5 
 

1b) The model suggests that school holidays have the potential to affect the cycles in 

incidence, provided that the reduction in contact during school holidays is sufficiently lower 

than that during school term times.   

 

However, the model is somewhat simple, e.g. it assumes that people mix randomly, it does 

not account for age-dependent transmission and contact.  Also, it assumes that there are 

only 4 school holidays per year, whereas in reality (at least in the England) children have 1 

week holidays during the spring and summer.  A further complication is that school holidays 

(and therefore reductions in contact between schoolchildren) do not always occur 

simultaneously across the country. 
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Exercises for Model 4.6 

1. The growth rate m can be calculated using the expression 








)0(

)100(
ln

100

1

N

N
 where N(0) 

and N(100) are the population sizes at the start and after 100 years respectively.  This 

expression can be obtained after rearranging equation 3.15 (see page 55 of the book). 

 

Annual birth rate per 

1000 population 

Population size 

after 100 years 

Annual growth rate 

(%/year) 

15 84648 -0.2 

25 230098 0.8 

40 1031230 2.3 

 

The growth rate can also be calculated as the difference between the per capita birth 

rate and the per capita mortality rate (=1/(average life expectancy) = 0.1667 per year).   

For an annual birth rate of 40 per 1000 per year, this equation leads to values of the 

growth rate of 100×(40×0.001-0.1667)  2.3% per year. 

 

 

2. As suggested on page 94 of the book, increasing the birth rate should lead to a reduction 

in the inter-epidemic period.  This follows from the fact that an increased birth rate 

means that an increased number of newborns come in per unit time, which reduces time 

that is required for the proportion of the population that is susceptible to reach the 

threshold for an epidemic to occur (1/R0).  

 

 

3. a) If transmission is assumed to be density-dependent, then, as discussed in Panel 2.5, 

the average force of infection is assumed to increase as the population size grows.  This 

should have a similar effect to that of increasing the basic reproduction number.  

Following the logic discussed in section 4.3.2.2 in the book, you would therefore expect 

the inter-epidemic period to be shorter if transmission is assumed to be density-

dependent than if it is frequency-dependent (as assumed in the current model). 

 

b) The file “model 4.6a.mmd” is identical to model 4.6, except that the force of infection 

has been changed so that it is given by the equation λ(t)=βI(t).  As shown in Figure 

O.4.2, for this assumption, the predicted average force of infection increases over time, 

and the inter-epidemic period is shorter than for the (frequency dependency) 

assumption. 
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Figure O.4.2: Comparison between predictions of the daily force of infection and the daily 

number of new infectious persons, obtained using Models 4.6 and 4.6a.  The annual birth 

rate is assumed to be 40 per 1000 population. 
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Exercises for Model 4.7 
 

1.  b) and c) The herd immunity thresholds for measles, rubella and smallpox can be 

calculated using the equation 1-1/R0, and are as follows: 

 

 Assumed 

R0 

Herd immunity 

threshold 

Measles 13 100×(1-1/13) ≈ 92% 

Rubella 7 100×(1-1/7) ≈ 86% 

Smallpox 5 100×(1-1/5) ≈ 80% 

 

You should find that introducing vaccination at above the levels of coverage implied by the 

herd immunity threshold do result in control of transmission.   

 

Note that for practical purposes, the impact of introducing vaccination is best seen when 

vaccination is introduced once the incidence reaches equilibrium in the model.  Model 4.7 

has been set up so that one infectious person is introduced into the totally susceptible 

population and for the values of R0 assumed for rubella and smallpox, equilibrium is reached 

more than 100 years after the start of the simulations.  For these assumptions, it would 

therefore be appropriate to change the value for year_start_vaccination so that it is above 

100 years.   

 

Alternatively, as discussed in the solution to question 2b) for the exercises for Model 3.2, you 

speed up the time at which the incidence reaches equilibrium by changing the values for the 

initial number of susceptible and immune persons to values that are close to equilibrium.  

For example, changing the value for Immune_0 so that it equals total_popn*(1-R0) and 

setting Susceptible_0 to equal total_popn-Infectious_0-Immune_0 will result in the 

equilibrium being more apparent less than 100 years after the start of model runs, than in the 

situation whereby one infectious person is introduced into the population at the start.  

 

 

2.  Figure O.4.3 shows the plot of the proportion susceptible over time, for different levels of 

effective vaccination coverage which are below the herd immunity threshold.  On average, it 

remains unchanged over time.  

 

An unchanging average value for the proportion susceptible is to be expected since, if the 

coverage is below the herd immunity threshold, the infection is still endemic and therefore 

the average net reproduction number still equals one.  As discussed in section 4.6 of the 

book, the net reproduction number is related to the proportion susceptible through the 

equation: 

Rn = R0s 

 

Therefore, substituting for Rn=1 into this equation and rearranging it leads to the result: 

s= 1/R0 

 

i.e. the proportion susceptible remains 1/R0 if the effective vaccination coverage is below the 

herd immunity threshold. 
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If the coverage is above the herd immunity threshold, transmission should cease and the 

proportion susceptible is just given by 1-proportion effectively vaccinated.  

 

 
Figure O.4.3:  Predictions of the proportion of the population that is susceptible to measles 

for different levels of effective vaccination coverage among newborns (introduced in year 0), 

obtained using Model 4.7. 

 

 

3 a) As discussed in the answer to question 4.2b in the book, the average age at infection 

can be calculated from the inter-epidemic period using the equation: 
)'(4 2

2

DDπ

T
A

+
= .   

 

Values for the inter-epidemic period can be obtained from the plot in the model using the 

formula: 10/(number of complete cycles over a 10 year period.  The values obtained using 

this method, together with the values for the average age at infection obtained using the 

above equation, are summarized in Table O.4.3.   

 

Note that in Table O.4.3, the number of complete cycles over a 10 year period was read off 

from the figure at a point after the cycles in incidence had stabilized, i.e. when they occurred 

at regular intervals (albeit at a low level).  In some instances, regular cycles in incidence 

could be seen if the value for STOPTIME in the model was extended to up to 146000 days.  

 

You should be cautious about accepting the values for the average age at infection since the 

model makes several simplifying assumptions, e.g. that individuals mix randomly, the 

mortality rate is identical for all persons in the population, and it does not account for 

maternal immunity. 

 

b) Rearranging the equation 
mλ

A
+

=
1

 leads to the following equation for the average 

force of infection: 

m
A

λ −=
1
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As shown in Table O.4.3, the values for the average force of infection obtained using the 

average age at infection calculated in part a) are generally consistent with the values 

predicted by the model. 

 

Table O.4.3: Summary of predictions of the inter-epidemic period, the average age at 

infection and the average force of infection predicted in the long-term after the introduction of 

vaccination of newborns in Model 4.7. 

Effective 

vaccination 

coverage 

among 

newborns (%) 

No. of 

cycles 

over a 10 

year 

period  

Inter-epidemic 

period after 

the 

introduction 

of vaccination 

(years) 

Average 

age at 

infection 

(years)* 

Average 

daily force 

of 

infection☺ 

Average 

daily force 

of infection 

predicted 

by the 

model 

50% ~2.6 ~3.8 ~9 ~2.6×10-4 ~2×10-4 

80% ~1.5 ~6.7 ~28 ~6×10-6 ~6×10-5 

* calculated using the equation 
)'(4 2

2

DDπ

T
A

+
=  

☺  calculated using the equation m
A

λ −=
1

.  (Note that the units used for A and m must 

be consistent when doing the calculation!).
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Exercises for Model 5.2 
 

1. For both mumps and rubella, model predictions underestimate the observed data for 

teenagers and overestimate those for adults.  It is therefore difficult to predict whether the 

true average force of infection was higher or lower than the value currently assumed!  

 

4. You would expect the best-fitting force of infection to greater if the test sensitivity is 

assumed to be <100% than when the test sensitivity is assumed to be 100%.  By definition, 

when the test has a sensitivity of <100%, not all of those who have been infected are 

identified as such.  Therefore, in order for model predictions of the proportion seropositive to 

match the observed seropositive, the model needs to assume that a higher proportion of 

individuals of a given age have been infected than in the situation when the sensitivity is 

assumed to be 100%. 

 

b and c) To incorporate 80% test sensitivity in the model, the expression in the pink cells of 

column G would need to be multiplied by 0.8.  The values in this column are then 

interpretable as the predicted proportion of the population in the given age group that is 

seropositive.  You should find that when the new expressions are fitted to the data, the 

estimated average force of infection increases (as you should have predicted in question 4a) 

to about 22% per year for rubella and 40% for mumps.   

 

You should be cautious about accepting the estimates obtained assuming that the sensitivity 

is 80% since they lead to a poor fit of model predictions to the data.  This poor fit should be 

clear from the graph and from the fact that the deviance is much greater than that obtained 

when the test sensitivity is assumed to be 100%.  On the other hand, if the sensitivity is 

assumed to be 95%, the fit of the model to the data is considerably better than that obtained 

assuming 100% sensitivity.  

 

In fact, using techniques described for model 5.4 for fitting models to data and estimating 

confidence intervals for two unknown parameters to the data, it is possible to estimate the 

sensitivity of the test for rubella and mumps antibodies to be about 94% (95%CI: 93-95%) 

and 97% (95% CI: 97-98%) respectively.   

 

The following compares the best-fitting force of infection estimates obtained assuming a 

sensitivity of 100%, 95% and 80%, together with the deviance: 

 

 Sensitivity Force of infection (95% CI) Deviance 

Mumps 100% 19.8 (19.1, 20.5) 337 

 95% 27.6 (26.3, 28.9) 133 

 80% 39.6 (37.2, 42.3) 1294 

 97% (best-fitting) 25.3 (24.3, 26.5) 81 

Rubella 100% 11.6 (11.1, 12.1) 133 

 95% 14.5 (13.7, 15.3) 67 

 80% 21.8 (20.3, 23.5) 274 

 94% (best-fitting) 14.9 (14.1, 15.8) 66 
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Exercises for Model 5.3 
 

3. If the duration of maternal immunity is reduced to 4 months, then you would expect the 

estimated value for the force of infection to be lower than that estimated when you assume 

that it is 6 months.   

 

This difference follows from the fact that if the duration of maternal immunity is assumed to 

be short, the model assumes that individuals of a given age have been susceptible for a 

longer period of time than for the situation when the duration of maternal immunity is 

assumed to be long.  The model is therefore able to reproduce the observed proportion 

seropositive by that age using a lower force of infection, than in the situation when the 

duration of maternal immunity is assumed to be long. 

 

Assumption about  

maternal immunity 

Duration Force of infection (%) 

(95% CI) 

Waning immunity 6 months (average) 12.0 (11.5 ,12.5) 

 4 months (average) 11.8 (11.3 ,12.4) 

Fixed duration 6 months  12.1 (11.6 ,12.6) 

 4 months 11.9 (11.4 ,12.4) 

 

 

 

4. The following table summarizes the values for the age at which the smallest proportion of 

individuals should be immune if the average duration of maternal immunity is fixed at 6 

months, for different values for the force of infection, based on the expression 

( )
μλ

μλ
a

−
=

/ln
min .  These should be consistent with the values predicted by the catalytic model. 

 Assumed force of infection 

 1%/yr 5%/yr 10%/yr 20%/yr 

amin 2.7 years 1.9 1.6 1.3 
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Exercises for Model 5.4 
 

2. To incorporate maternal immunity, equations 5.27a and 5.27b for the proportion 

susceptible at age a would need to be amended as follows: 

 










=

−−−

−−

yearsaee

yearsae
as

aλλ

aλ

15

15
)(

)15(5.14

)5.0(

21

1

 

 

 

These expressions can be incorporated into the spreadsheet by changing the expression for 

prop_sus15 (cell D16) to =exp(-14.5*foi_u15), and changing the expression for the 

proportion of 0.5 years that are susceptible to =exp(-foi_u15*(A36-0.5)), before copying it 

down until age 14.5 years.  

 

The best-fitting estimates should then be as follows: 

 Force of infection (% per year) 

 (95% CI) 

Assumed duration of 

maternal immunity 

<15 year olds ≥15 year olds 

No immunity 13.3 (12.7, 13.9) 4.2 (2.9, 5.6) 

6 months 14.1 (13.5, 14.7) 3.8 (2.5, 5.2) 

 

As discussed on pages 119-120 of the book, incorporating maternal immunity into the model 

leads to an increased estimate for the force of infection (at least for those aged <15 years).  
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Exercises for Model 5.5 
 

2. a) Rearranging the equation R0=λL leads to the equation λ=R0/L.  Substituting for R0=12 

and L=70 years into this equation implies that the average force of infection equals 12/70 

0.17 per year, which is equivalent to 0.17/365=4.7×10-4 per day.  This value is reasonably 

consistent with that predicted by the model (taken as the midpoint between the highest and 

lowest values) of about 4.6×10-4 per day. 

 

b) Similarly, the equation λ=R0/L implies that the average force of infection is about 0.1 per 

year or 0.1/365 = 2.7×10-4 per day, which is reasonably consistent with the value predicted 

by the model (2.6 ×10-4 per day).   

 

c)  The following table compares model predictions against estimates obtained using given 

equations.  You should find that the values predicted by the model are fairly consistent with 

those obtained using the equations (as you would expect!).  In fact, comparing model 

predictions against values predicted by the equations provides a good way of checking that 

the model has been set up correctly. 

 

 

 

R0 

 

 

Method used for 

estimation 

Proportion susceptible  Daily number of new 

infections per 100,000 

(20 yr olds) (calculated 

as 100,000×λe-λ20/365)  

20 year olds 

(calculated as 

e-λ20) 

Overall 

(calculated 

as 1/R0) 

7 Predicted by an equation 0.135 0.142 3.7 

 Model prediction 0.13 0.145 3.5 

12 Predicted by an equation 0.032 0.083 1.5 

 Model prediction 0.030 0.084 1.33 

 

 

3.  a) The average force of infection in the long-term after the introduction of immunization of 

50% of newborns is about 2.3×10-4 per day.  Substituting this value into the equation 

)1)(1(

'
'0 Lλev

Lλ
R

−−−
=  , and assuming that L=70 years, v=0.5 implies that R0 is given by the 

equation 12
)1)(5.01(

70365103.2
70365103.2

4

0 4


−−


=

−

−

−

e
R , which is consistent with the value assumed 

in the model. 

 

c) If R0=12, the herd immunity threshold equals 1-1/R0 = 1-1/12  0.917.   

 

For children in a given age group, as the effective vaccination coverage among newborns 

increases (and is still below the herd immunity threshold) the proportion susceptible in the 

long-term decreases, because of the removal of the cohort at birth through vaccination (as 

discussed on page 130 of the book).   

 

For adults, as the vaccination coverage increases and it is below the herd immunity 

threshold, the proportion susceptible increases.  This follows from the fact that the force of 

infection decreases as the vaccination coverage increases. Therefore (following the 

arguments on page 133 of the book) the proportion of unvaccinated individuals who reach 

adulthood still susceptible increases as the vaccination coverage among newborns 
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increases.  This outweighs the removal of the cohort of individuals at birth through 

vaccination; the net effect is that the proportion of all adults in a given age group who are 

susceptible increases. 

 

If the effective vaccination coverage is above the herd immunity threshold, then eventually, 

the proportion of the population in a given age group that is susceptible equals 1-effective 

vaccination coverage (e.g. 3% if the effective vaccination coverage is 97%).  This follows 

from the fact that once the effective vaccination coverage exceeds the herd immunity 

threshold, transmission stops in the model (see Graph 3 of the Figures panel) and therefore 

the proportion susceptible will just depend on the vaccination coverage. 

 

Note: to identify whether long-term predictions from the model following the introduction of 

vaccination are correct, you can check that model predictions for the proportion of a given 

age group that is susceptible are consistent with those estimated using equation 5.31 in the 

book.  Similarly, predictions of the number of new infections per day can be compared 

against those predicted using equation 5.36 in the book. 

 

4.  The parameter plot should produce predictions of a general decline in the force of 

infection and the daily number of new infections in each age group in the long-term with 

increasing effective vaccination coverage among newborns which are consistent with those 

shown in Figures 5.14 and 5.22 in the book (see Figure O.5.2 and Figure O.5.3).   

 

 
Figure O.5.2 Predictions of the final daily force of infection obtained using a parameter plot 
for Model 5.5 for different values for the effective vaccination coverage among newborns 
introduced in year 200 in the model.  The different lines are obtained using different values 
for the stoptime, assuming that R0=7 or 12.  The number of runs used in the parameter plot 
was 11. 

 

However, you should find that the plot depends on the value for the stoptime used when 

running the model, since the stoptime determines whether or not the model has reached 

equilibrium by the end of the run time (i.e. the point taken for the final force of infection and 

the number of new infections per day in the age groups of interest).   

 

This is illustrated in Figure O.5.2 and Figure O.5.3.  For example, considering the predictions 

obtained assuming that R0=7, the average daily force of infection and the number of new 

infections per 100,000 in a given age group are predicted to be higher when the effective 

vaccination coverage among newborns is 80% than when the latter is 70% and when the 
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stoptime in the model was 109,500 days.  This follows from the fact that an epidemic is 

predicted to peak shortly before day 109,500, and therefore the model has not yet reached 

equilibrium by this time.  In contrast, these patterns are not predicted when the stop time is 

240,000, 400,000 or 600,000 days. 

 

The disadvantage of using such long stoptimes is that the time required to run the model can 

be prohibitively long.  To reduce this problem, it would also be reasonable to bring forward 

the year in which vaccination is introduced (e.g. introduce it from the start).  For example, the 

outcome of interest is the final force of infection, and if the time period during vaccination has 

been in place is sufficiently long in the model, the final force of infection obtained should be 

is independent of the year in which the vaccination is introduced. 

 

 

 
Figure O.5.3: Predictions of the final daily number of new infections per 100,000 at different 
ages obtained using a parameter plot by Model 5.5 for different values for the effective 
vaccination coverage among newborns introduced in year 200 in the model, and using 
different values for the stoptime, assuming that R0=7 or 12.  The number of runs used in the 
parameter plot was 11. 

 

b) Based on these parameter plots, you should be most cautious about introducing rubella 

vaccination among newborns in the high transmission setting (R0=12), since it leads to a 

greater relative increase in the number of new infections per 100,000 population in adult age 

groups than in a low transmission setting. Therefore, unless women are vaccinated before 

they reach children-bearing age, the introduction of rubella vaccination among newborns 

could, potentially, lead to an increase in the burden of Congenital Rubella Syndrome (see 

pages 140-141 of the book).    
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Exercises for Model 5.6 
 

1a) The long-term average force of infection following the introduction of 100% immunization 

of 13 year olds is about 1.14×10-4 per day.  Substituting this value for λ’, and for L=70 years 

and v=1 into equation 5.37 leads to the following value for R0: 

7
011

365701014.1
365131014.1

4

0 4


−−


=

−

−

−

e
R , which is consistent with the value assumed in the 

model 

 

c) i) The proportion of children that are susceptible increases, e.g. from 35% before the 

introduction of 100% immunization of 13 year olds to about 64% for 10 year olds.  This 

increase follows from the fact that the introduction of vaccination leads to a reduction in the 

force of infection, which increases the proportion of individuals who reach a given age still 

susceptible.  Notice that 10 year olds are below the age at vaccination and do not benefit 

from the direct effect of vaccination. 

 

The proportion of individuals who are susceptible drops to zero because in the model, all of 

them would have been immunized. 

 

ii) The number of new infections among children decreases following the introduction of 

100% immunization of 13 year olds, largely resulting from the reduction in the force of 

infection, which, in this situation, outweighs the increase in the proportion susceptible seen 

in part c) i).  

 

The number of new infections among adults goes down to zero in the model once the first 

cohort of vaccinees reaches a given adult age group. This follows from the fact that all of 

them would have immunized.  

 

d) The force of infection before the introduction of vaccination was about 2.64×10-4 per day.  

The reduction in the average force of infection as a result of immunization of 100% of 13 

year olds in the model is therefore (2.64×10-4  -  1.14×10-4 ) ×100/ 2.64×10-4  = 57%. 

 

e) If R0=12, the average force of infection before and after vaccination is about 4.85×10-4   

and 3.74×10-4  per day respectively.  This corresponds to a reduction of 23%, i.e. the 

reduction in the force of infection is smaller in the high transmission setting than in a low 

transmission setting.   

 

This result follows from the fact that, in the absence of vaccination, a considerably smaller 

proportion of individuals in the high transmission setting reach age 13 years still susceptible 

to infection, than in the low transmission setting.  As a result, since only those susceptible to 

infection at age 13 years are vaccinated in the model, the proportion of the overall population 

that is vaccinated in the high transmission setting is much lower than in the low transmission 

setting.  Therefore the effect on the overall amount of transmission in the high transmission 

setting is much smaller than in the low transmission setting.   

 

2.  Figure O.5.4 shows the parameter plot obtained for the daily force of infection using a 

stoptime of 109,500 days.  The plot for R0=7 is generally consistent with the plot shown in 

Figure 5.23 in the book.   
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Figure O.5.4: Parameter plot of the (final) daily force of infection obtained using Model 5.6 
predicted for different values of the proportion of 13 year olds that are immunized.   

 

This plot again highlights the fact that vaccinating 13 year olds has a smaller impact on the 

force of infection in high transmission settings than in low transmission settings, although, in 

both settings, the impact on the overall force of infection is smaller than that of vaccinating 

newborns (see Figure O.5.2).   

 

As shown in Figure O.5.5, the number of new infections per 100,000 among those aged 20, 

30 and 40 years (and therefore the burden of Congenital Rubella Syndrome) is predicted to 

be lower in the long-term for all levels of vaccination coverage among 13 year olds, than for 

the situation when only newborns are vaccinated. You might therefore be happier about 

introducing vaccination among 13 year olds than about introducing vaccination of newborns. 

 

 
Figure O.5.5:  Parameter plot of the (final) daily number of new infections per 100,000 
among those aged 20, 30 and 40 years obtained using Model 5.6 for different values of the 
proportion of 13 year olds that are immunized.   
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Exercises for Model 6.2 
 

1. You should notice that high values for R0 are associated with short durations of outbreaks 

and large outbreak sizes. 

 

The following are the solutions to the questions in section 6.2.3 of this document, 

which relate to model 6.2. 

 

3. a) Figure O.6.1 summarizes predictions of the number of cases in each time step obtained 

using 50 runs, assuming that R0=2.  Based on this plot, it is difficult to predict when the peak 

number of cases is most likely to occur – it seems plausible that it occurs sometime during 

time steps (or generations) 1-4.   

 

 
Figure O.6.1:  Summary of the number of cases predicted in each time step, obtained using 
50 runs of model 6.2, assuming that R0=2. Each bar for a given time step reflects the output 
for a single model run. 

 

3b and c) Figure O.6.2 summarizes the average and 95% range in number of cases 

predicted in each time step for 50 and 2000 model runs, assuming that R0=2.  There is some 

suggestion that the peak is most likely to occur on the second time step, since the average 

number of cases for this time step is slightly higher than for the other time steps.  However, 

the 95% range of the predictions overlap with those for most of the other time steps.  The 

predictions are similar when either 50 or 2000 runs were used, suggesting that the variation 

in the predictions obtained using 50 runs is not just due to the relatively small number of 

runs.   

 

3d) In about 64% of the model runs, 8-10 cases occurred in the outbreak (at least when 500 

or more runs were considered), suggesting that you are most likely to see 8-10 cases in the 

outbreak.  However, for about 10% of the runs, no cases occurred at all, showing that it is 

possible that no outbreak will occur at all. 
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Figure O.6.2:  Summary of the average and 95% range in number of cases predicted in each 
time step in 50 and 2000 runs of model 6.2, assuming that R0=2. 
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Exercises for Model 6.3 
 

2 a)  You should notice that as you increase the population size, the peak of the epidemic 

becomes increasingly delayed.  This follows from the fact that (for a given value for R0) if the 

population is large, it takes longer to deplete sufficient numbers of susceptible individuals to 

the threshold required for the incidence to decrease than when the population is small. 

These effects are also predicted by the deterministic model (see e.g. Model 2.1).  

 

You should also notice that if the population is large, then any outbreak predicted by the 

model is identical to that predicted by a deterministic model and the proportion of the 

population that has been infected by the end is identical to that predicted by the final size 

equation (see equation 4.21 or Figure 4.12 in the book). 

 

b) From your observations in part a), you would expect that for large values of the population 

size, most of the model runs will lead to similar values for the proportion of individuals that 

are infected by the end.  You would also expect that, by chance, no outbreaks will occur at 

all for a few of the runs considering a large population.  This is illustrated in Figure O.6.3 and 

Figure O.6.4.   

 

3.  As shown in Figure O.6.5, the greatest discrepancy between the risk of infection 

calculated using the Reed-Frost equation and that calculated using the equation λt = βIt  

(where pβ) for Model 6.3 occurs when the population size is small (10 individuals), when 

the values obtained using the two equations differ by up to about 50%.  The discrepancy 

decreases as the population size increases up to a certain level.  For the assumptions used 

in the model (R0=2), the maximum discrepancy is similar for populations comprising 10,000 

or more individuals.  For these populations, the risk of infection calculated using these two 

equations differs by up to about 16%. 

 

 

http://www.anintroductiontoinfectiousdiseasemodelling.com/


AN INTRODUCTION TO INFECTIOUS DISEASE MODELLING – GUIDE TO THE ONLINE MATERIAL | 141 
                                                                                                   SOLUTIONS TO SUGGESTED EXERCISES 

 

Version 5, released 28/02/2021 
www.anintroductiontoinfectiousdiseasemodelling.com 

 

Figure O.6.3: Summary of the proportion of the simulations of Model 6.3, for which different 
proportions of individuals were infected by the end of the outbreak in populations comprising 
between 10 and 1 million persons.  R0 as taken to equal 2 and 1 infectious person was 
introduced into the population at the start.  The results are based on 500 runs of the model.  
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Figure O.6.4:  Summary of the proportion of the simulations of Model 6.3, for which different 
numbers of generations of cases occurred in a population comprising between 10 and 1 
million persons.  R0 as taken to equal 2 and 1 infectious person was introduced into the 
population at the start.  The results are based on 500 runs of the model. 
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Figure O.6.5:  Summary of the range in the percentage difference between the risk of 

infection obtained using the Reed-Frost equation and the equation λt = βIt (where pβ), 
obtained using 50 model runs for values of the population size ranging between 10 and 1 
million. R0 was taken to equal 2 and 1 infectious person was introduced into the population 
at the start.   
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Exercises for Model 6.4 
 

2. Models set up using method 3 are slightly more realistic than those set up using method 

2, since they describe transitions using variable time steps and individuals do not all become 

infected or develop disease or become immune at the same time (which is consistent with 

reality).  The main disadvantage of models set up using method 3 is that predicting the 

course of each outbreak (for example) requires more computations than do models set up 

using method 2.   
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Exercises for Model 7.1 
 

1.  As shown in Table O.7.1, the best-fitting values obtained by fitting predictions from Model 

7.1 to the observed data from the 1957 (Asian) influenza pandemic depended both on the 

starting set of parameter values and the goodness of fit statistic used.   However, in general, 

the best-fitting values for the contact parameters and the proportion of infectious persons 

who were reported were similar for all scenarios.  There was some variation in the best-

fitting values for the numbers of infectious young and old persons, suggesting that these 

parameters cannot be estimated reliably.  As shown in Figure O.7.1, the best-fitting 

predictions obtained using the different approaches are similar.  

 

Table O.7.1: Summary of the best-fitting values for the contact parameters (b1 and b2), the 

proportion of infectious persons that were reported (frac_rep) and the initial numbers of 

infectious young and old persons obtained by fitting predictions from Model 7.1 to data from 

the 1957 (Asian) influenza pandemic shown in Figure 7.3 using Berkeley Madonna and 

different goodness of fit statistics.  

Goodness 

of fit 

statistic 

used in the 

fitting 

Starting 

set of 

parameter 

values 

Parameter Best-fitting 

value for 

goodness 

of fit 

statistic 

  b1  

(per day) 

b2  

 (per day) 

frac_rep Infous_y0 Infous_o0  

SSQ A 3.38×10-4 7.14×10-5 0.49 0.74 34.78 16997 

B 3.39×10-4 6.94×10-5 0.50 6.94 0.02 17620 

C 3.38×10-4 7.14×10-5 0.49 0.74 34.78 16997 

Minus_llhood A 3.23×10-4 7.46×10-5 0.49 6.85 5.90 -7275 

B 3.23×10-4 7.46×10-5 0.49 6.85 5.90 -7275 

C 3.23×10-4 7.46×10-5 0.49 6.85 5.90 -7275 

Berkeley 

Madonna’s 

curve-fit 

statistic 

A 3.34E-04 7.27×10-5 0.48 0.00 29.68 53 

B 3.55E-04 7.39×10-5 0.46 0.00 19.78 56 

C 
3.45E-04 7.37×10-5 0.47 1.48 15.35 57 
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Figure O.7.1: Comparison between best-fitting model predictions of the numbers of cases 

per week and the cumulative numbers of reported cases against the data observed for the 

GP practice in Wales from the 1957 (Asian) influenza pandemic, which are plotted in Figure 

7.3 of the book, after aggregating the data into two age groups.  The different lines reflect 

the best-fitting predictions obtained either by using the optimize function in Berkeley 

Madonna (applied to ssq and minus_llhood) or by using Berkeley Madonna’s curve fit 

statistics. 

 

2. As shown in Figure O.7.2 and Table O.7.2, the smallest numbers of reported cases 

overall in the population are predicted for the assumption that all the vaccine doses are 

distributed to young, whereas vaccination is predicted to have the smallest impact if the 

doses are distributed just to the old.  The small impact in the population of vaccinating only 

adults follows from the assumption that the model assumes that there is relatively little 

contact both between adults and other adults, and between adults and children.  Therefore 

vaccinating adults has little impact on reducing the amount of transmission in either adults or 

children.   

 

In contrast, the comparatively large reduction in the overall number of reported cases 

predicted assuming that the vaccine doses are distributed among children follows from the 

fact that children are assumed to have a large amount of contact with other children.  

Therefore vaccinating children leads to substantial reductions in the risk of infection for other 

children and therefore in the total numbers of cases reported in the population.  

 

Notice that the relative sizes of the total numbers of cases reported for each vaccination 

strategy are consistent with the relative sizes of the reproduction number estimated for these 

scenarios (see solutions to the exercise 7.5 in the book and exercise 3 for model 7.6). For 
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example, the largest reproduction number is associated with the strategy of vaccinating only 

adults, the second largest reproduction number is associated with that of vaccinating an 

equal proportion of children and adults etc.   

 

 
Figure O.7.2: Summary of predictions of the total numbers of cases reported among children 

(the “young”), adults (the “old”) and overall in the population obtained using Model 7.1 for 

different assumptions about how 2500 vaccine doses are distributed.  The predictions are 

obtained under extreme assumptions about the vaccine efficacy (100%),  and therefore 

reflect the minimum numbers of cases reported for these scenarios. 

 

Table O.7.2:  Summary of the vaccination coverage required for 2500 vaccine doses to be 

distributed according to the various options presented in question 3 for model 7.1, together 

with the total numbers of cases reported among children (the “young), adults (the “old”) and 

overall in the population.  The predictions are obtained under extreme assumptions about 

the vaccine efficacy (100%),  and therefore reflect the minimum numbers of cases reported 

for these scenarios. 

Individuals targeted % vaccinated+ Number of reported 

cases among: 

Children Adults Children Adults Total 

No vaccination 0% 0% 1008 866 1874 

i) Children only 94.7% 
(=100×2500/2639) 0% 4 18 22 

ii) Adults only 0% 

 
46.6% 

(=100×2500/5361) 964 282 1246 

iii) Same proportion of 

children and adults* 

31.25% 
(=100× 

2500/(2639+5361) 

31.25% 
(=100× 

2500/(2639+5361) 376 192 568 

iv) Equal numbers of 

children and adults 
47.4% 

(=100×1250/2639) 
23.3% 

(=100×1250/5361) 75 58 133 
+ These are calculated using the numbers presented in the solutions to question 7.5 of the book 

*The proportion of children and adults that need to be targeted with this strategy equals the number of vaccine 

doses available ÷ population size = 2500/(2639+5361)=31.25% 
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Exercises for Model 7.2 
 

1. a)  You would expect the number of persons in each age stratum to equal the population 

size divided by the number of age strata.  This should equal 55,000,000/75 = 733,333. 

 

b-d) Table O.7.3 shows the average force of infection together with the number of infectious 

young and old persons that you should have obtained.  The values were can be obtained by 

taking the arithmetic mean of the values for the last 10 years of the model runs (for those 

interested, the output was exported to Excel, where the average was calculated).  Due to the 

variability in the numbers during the course of a single year, you would have obtained 

slightly different values if you had simply read off the values approximately halfway between 

the minimum and the maximum in a given year.   

 

You should notice that the values obtained for the numbers of infectious persons are 

generally consistent with the values presented in the book.  

 

Table O.7.3: Predictions of the average daily and annual force of infection and the numbers 

of infectious young and old persons obtained using Model 7.2 in the absence of vaccination. 

  Matrix R1 Matrix R2 

Average daily force of infection Young 3.54×10-4 3.56×10-4 

 Old 1.10×10-4 1.06×10-4 

Annual force of infection* Young 0.13 0.13 

 Old 0.04 0.04 

Number of infectious persons Young 18924 18924 

 Old 2880 2881 

* calculated as the average daily force of infection × 365 

 

 

2 b)  With 50% effective vaccination coverage among newborns, you should find that the 

average force of infection in the long-term for matrices R1 and R2 is as follows: 

 

 Daily force of infection 

Matrix R1 Matrix R2 

Young 1.10×10-4 1.10×10-4 

Old 4.53×10-5 6.04×10-5 

 

i.e. the force of infection in the long-term among children is predicted to be similar if persons 

are assumed to mix according to matrix R1.  However, the force of infection among adults is 

predicted to be higher if persons are assumed to mix according to matrix R2, than if they are 

assumed to mix according to matrix R1. 

 

b) The slightly higher force of infection among adults that is predicted if individuals are 

assumed to mix according to matrix R2 than if they mix according to matrix R1 follows from 

the fact that the β parameter describing contact between the young and the old in matrix R2 

(βyo and βoy) is lower than that for matrix R1.  Therefore the amount of transmission (and 

therefore vaccination) among children has a smaller effect on the rate at which adults are 

infected if individuals in the population are assumed to mix according to matrix R2 than if 

they are assumed to mix according to matrix R1.  
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c)  As discussed in chapter 5, the higher the value for the force of the infection, the smaller 

the value for the proportion of unvaccinated individuals who reach a given age still 

susceptible.  In question 2a) we found that the long-term average force of infection among 

the old following the introduction of vaccination among newborns was higher for the 

population mixing according to matrix R2 than it was for the population mixing according to 

matrix R1.  You would therefore expect the proportion of 20 year olds who are susceptible in 

the population mixing according to matrix R1 to be higher than the corresponding proportion 

for the population mixing according to matrix R2.  

 

d) As shown in Figure O.7.3, if it is assumed that individuals mix non-randomly, then if 

vaccination is introduced among newborns at a coverage of below the herd immunity 

threshold, the overall proportion of the population that is susceptible is predicted to be higher 

after the introduction of vaccination than before vaccination is introduced.   

 

This is intuitively reasonable.  For example, the reduction in the force of infection as a result 

of vaccination (and therefore the proportion of persons in specific age groups who are 

susceptible), depends on the assumed mixing patterns (see answers to questions 2b and c).  

This means that the overall proportion of the population that is susceptible must also depend 

on the assumed mixing patterns. 

 

 
Figure O.7.3: Predictions of the overall proportion of the population that is susceptible 

following the introduction of vaccination of newborns in year, with an effective coverage of 

50%, obtained using Model 7.2, and assuming that individuals mix according to either 

WAIFW matrix R1 or WAIFW matrix R2 (see section 7.4.2.1.1 of the book). 

 

3. b) The herd immunity threshold associated with matrix R1 is about 1-1/3.5≈0.714.  The 

herd immunity threshold for matrix R2 is about 1-1/4.75≈0.789. 

 

To identify whether or not transmission persists following the introduction of vaccination at 

some level of coverage, you can click on the Table button  of the figure showing 

predictions of the numbers of new infections per 100,000 per day.  Once this number drops 

to zero, then transmission in the model has stopped.  As long as this number is above zero 

(albeit some very small number), then transmission is still continuing in the model.  You may 

need to extend the stoptime in the model to identify when transmission does actually cease. 
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Considering the population in which individuals mix according to matrix R1, you should find 

that if you include an effective vaccination coverage of 71% among newborns, then 

transmission continues and an epidemic occurs about 247 years after the introduction of 

vaccination.  However, if you include an effective vaccination coverage of 72%, then 

transmission stops eventually by day 77090 (or 111 years after the introduction of 

vaccination).  This shows that the herd immunity threshold for mixing pattern R1 is between 

71% and 72%. 

 

Considering matrix R2, you should find that if you include an effective vaccination coverage 

of 78% among newborns, then transmission continues and an epidemic occurs about 72 

years after the introduction of vaccination.  However, if you include an effective vaccination 

coverage of 79%, then transmission stops eventually by day 644960 (or year 1667 after the 

introduction of vaccination).  This shows that the herd immunity threshold is between 78% 

and 79% for mixing pattern R2. 

 

4 a & b) Figure O.7.4 compares the predictions that you should have obtained using the 

parameter plot for matrices R1 and R2 against the predictions obtained assuming that 

individuals mix randomly.  In general, the predicted daily number of new infections per 

100,000 among adults is much lower if it is assumed that individuals contact each other 

according to matrix R1 or R2 than if it assumed that they mix randomly.  This is intuitively 

reasonable, given that the force of infection among adults which is associated with contact 

patterns R1 and R2 is much lower than that associated with the assumption that individuals 

mix randomly.  

 
Figure O.7.4:  Predictions of the final daily number of new infections per 100,000 at different 

ages obtained using a parameter plot by Model 7.2 for different values for the effective 

vaccination coverage among newborns introduced in year 100 in the model.  The stoptime 

was taken to be 400,000 days; 21 runs were used in the parameter plot. 
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In general, vaccination with a given level of coverage appears to lead to similar relative 

increases in the daily number of new infections per 100,000 for the assumptions that 

individuals mix randomly or that they contact each other according to matrix R1 or R2.   
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Exercises for Model 7.4 
 

1. b) If R0_est and and x are set to equal 1.5 and 0.5 respectively then you should find that 

you get a value for R0 of 1.08 and a value for x of -1.24.  These values are implausible since 

it is unacceptable for the proportion of the infectious person that is infectious to be negative.   

 

2b)  If R0_est is set to equal 2, then Solver finds a value for R0 of 1.08.  This highlights the 
fact there is more than one value of “R0” for which the determinant of the matrix 















−

−

0

0

RRR

RRR

oooy

yoyy
 equals zero.  The value which should be taken to be the “real” R0 is 

the largest value for which the determinant equals zero.  
 

 

c) The advantages of the simultaneous equations and matrix determinant approaches for 

calculating R0 is that they require relatively few calculations.  However, their disadvantage is 

that since the basic reproduction number is the largest value for R0 which satisfies equations 

7.37 and 7.38, or for which the determinant of the matrix 














−

−

0

0

RRR

RRR

oooy

yoyy
 is zero, we 

need to identify all values for “R0” which satisfy these equations to identify which is the 

largest.  Excel is not yet designed to do this, although some packages, such as Stata, can 

provide all the values that we are interested in, if we type in an appropriate matrix.   

 

The disadvantage of the simulation approach for calculating R0 is that it requires more 

calculations than do the simultaneous equation or matrix determinant approaches.  

However, as discussed in section B.7.4 of the book, the value obtained almost always 

converges to the correct value for R0.  Some exceptions to this include matrices which have 

structures which are similar to the following: 

a) 








10

04
.  For this matrix, if we use the simulation approach to estimate R0, and start 

the simulation with persons in only one of the groups, then the ratio of the number of 

secondary persons in successive generations converges either just to 4 or to 1 (i.e. 

one of the eigenvalues of the matrix).  

 

b) 








04

10
.  For this matrix, using the simulation approach will result in the ratio of 

number of secondary infectious persons in successive generations oscillating 

between 1.6 and 2.5. For this matrix, R0 is then the square root of the product of 

these numbers i.e. 245.26.1 == , which would be correctly identified using the 

matrix determinant or simultaneous equations approach.  Further discussion of these 

matrices can be found in work by Dietz1 and Heesterbeek and Diekmann2-4.   

 

It is possible to obtain an intuitive explanation for why we need to take the square 

root of the product of 1.6 and 2.5 to obtain R0 by considering the kinds of infections 

which might be described using matrices with the above structure.  The following is 

an argument adapted from Dietz1 and Heesterbeek and Diekmann2-4.   
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A matrix with the above structure might be used to describe transmission of a 

parasite between a vector (e.g. mosquito) and a human for which transmission only 

occurs between the mosquito and the human and there is no direct human-human or 

vector-vector transmission.  Consequently to calculate the number of secondary 

infectious humans resulting from one infectious human, we need to know how many 

infectious vectors result from each human, and how many infectious humans result 

from each vector.  The product of the two numbers gives us the number that we are 

interested in, i.e. the number of secondary infectious humans resulting from each 

infectious human.  The square root of this number gives us the average number of 

secondary infectious persons or vectors per generation.  The latter number is R0.   
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Exercises for Model 7.5 
 

3. You should find that as you increase the value for α, the value for R0 increases slightly.  

For example, if α=2, R0=11.35, whereas if α=1.5, R0=9.9. 

 

Notice that simply increasing the value for α only affects the amount of contact between 

those aged 10-14 years and doesn’t affect the parameters describing contact between other 

age groups.  Since 10-14 year olds make up a small proportion of the population, increasing 

the value leads to only small increases in R0. 

 

4d and e) As discussed in question 7.4 in the book, you should find that as the value for α 

(and therefore the amount of contact between 10-14 year olds) increases, the value for the 

net reproduction number increases as follows.  

 

 

α 1 1.25 1.5 1.75 2 

Rn 0.96 0.99 1.04 1.11 1.2 

 
These values are generally consistent with those in Figure 7.17. 
 
The fact that the net reproduction number was very close to 1 in 1994/5 for values for α>1, 

and for different WAIFW matrices, suggests that, as concluded by Gay et al, there was a 

potential for an epidemic to occur in 1994/5 in England.   
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Exercises for Model 7.6 
 

4.  The solution to the first part of the question is identical to that provided for exercise 7.5 in 

the book (reproduced below, for convenience).   

 

The following table summarizes the number of susceptible individuals for each vaccination 

scenario, the Next Generation Matrix and the values for the reproduction number: 

 

Individuals 

targeted 

Number of susceptible Next Generation 

Matrix 

Reproduction 

number Children (Sy) Adults (So) 

No vaccination 

2639 5361 









766.0383.0

188.0784.1
 1.85 

(=R0) 

Children only 139 

 
(=2639-2500) 

5361 

 
(=5361-0) 










766.0383.0

010.0094.0
 

0.77 

Adults only 2639 

 
(=2639-0) 

2861 

 
(=5361-2500) 










409.0204.0

188.0784.1
 

1.81 

Same 

proportion of 

children and 

adults* 

1814 

 
(=2639×(1-0.3125)) 

 

3686 

 
(=5361×(1-0.3125)) 

 










526.0263.0

130.0226.1
 

1.27 

Equal numbers 

of children and 

adults 

1389 

 
(=2639-1250) 

4111 

 
(=5361-1250) 










587.0294.0

099.0939.0
 

1.01 

*The proportion of children and adults that need to be targeted with this strategy equals the 

number of vaccine doses available ÷ population size = 2500/(2639+5361)=31.25% 

 

The smallest value for the reproduction number is associated with the strategy of vaccinating 

only children, which suggests that, of the four strategies, this approach may be the best way 

of distributing the vaccine stocks.  However, we would also need to account for the severity 

of influenza and the mortality rates in other age groups before making the final decision 

about which vaccination strategy should be adopted. 

 

There is still potential for an epidemic to occur for each of these vaccination scenarios, since 

the reproduction number is very close to 1.  Note that these calculations assume that the 

vaccine efficacy is 100%, which is unrealistic.  Therefore, if this were to be a real situation, 

the true reproduction number would have been greater than the values calculated above.  

 

 

 

 

 
 

http://www.anintroductiontoinfectiousdiseasemodelling.com/

