
Chapter 5 (Solutions) 

Age patterns 
 

 

 

 

5.1  Adapting expression 5.25 in the book, the number of new infections per person 

among individuals in age group a can be calculated using the expression: 

sa 

 

where sa is the proportion of individuals in age group a who were seronegative.  The 

values obtained for the average number of new infections per 100 population are as 

follows: 

 

 Average number of infections per year per 100 

population 

(calculated using sa ×100) 

Age group 

(years) 

China 

/yr 

Fiji 

 

UK 

 

15-19 0.80 

(=0.2×0.04×100) 

1.74 

(=0.04×0.435×100) 

1.54 

(=0.12×0.128×100) 

20-29 0.86 

(=0.2×0.043×100) 

1.15 

(=0.04×0.288×100) 

1.04 

(=0.12×0.087×100) 

30-39 1.08 

(=0.2×0.054×100) 

0.77 

(=0.04×0.193×100) 

0.85 

(=0.12×0.071×100) 

 

We could have also used the expression sa×risk of infection, which, using the 

relationship risk =1-e-rate (Panel 2.2), leads to the expression )1(a es  for the 

number of new infections per person.  This expression leads to the following values for 

the average infection incidence:  

 

 Average number of infections per year per 100 

population 

(calculated using 100×)1(a es ) 

Age group 

(years) 

China 

 

Fiji 

 

UK 

 

15-19 0.73 1.71 1.45 

20-29 0.78 1.13 0.98 

30-39 0.98 0.76 0.80 
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Note that the greatest discrepancy between the values obtained using the expressions 

sa and )1(a es  occurs for the estimates for China.  This follows from the facts that 

the force of infection is higher for China that it is for the UK and Fiji, and the difference 

between the value for the risk )1( e  and the rate (  is greatest for large values of 

the rate (see Figure 2.5). 

 

The estimates suggest that the highest number of new infections per 100 population 

would have been seen among 15-19 year olds in Fiji, followed closely by that for 15-19 

year olds in the UK. Therefore, based on these estimates, we would expect the 

incidence of CRS to have been greater among babies born to women in these age 

groups in these countries, than for babies born to women in other age groups in the 

same countries.   

 

However, the overall burden of CRS depends both on the infection incidence and 

number of livebirths among women in different age groups.  Therefore, to infer the 

setting in which the burden of CRS is likely to be the greatest, we would need to 

combine the above estimates with the age-specific fertility rate. 

 

 
 

5.2 a) Figure S5.1 plots the observed proportion seronegative.  The median age at 

infection is the point at which the vertical dotted line in this figure crosses the x-axis, 

which occurs at about 6 years.  This estimate suggests that the average force of 

infection is about 100×1/6 17% per year.  

 

 
Figure S5.1: Observed proportion of individuals who did not have antibodies to rubella 

during 2004-5 in Bangladesh1 

 

b)  i)The overall proportion susceptible is calculated using equation 5.17 as the sum of 

the proportion susceptible in each age group, weighted by the proportion of the 

population that is in that age group (pa×Sa/Na).  The final column in the following table 

gives the values for pa×Sa/Na in each age group.   
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Age group 

(years) 

Number 

tested 

Number 

negative 

% 

negative 

Proportion of the 

population that is in the 

given age range (pa) 

 

pa×Sa/Na 

1-5 61 48 78.7 0.1139 0.08964 

6-10 61 29 47.5 0.1135 0.05391 

11-15 63 21 33.3 0.1109 0.03693 

16-20 62 14 22.6 0.1087 0.02457 

21-25 83 15 18.1 0.104 0.01882 

26-30 67 11 16.4 0.0923 0.01514 

31-35 63 12 19.0 0.0775 0.01473 

36-40 60 7 11.7 0.0641 0.0075 

 62 6 9.7 0.2151 0.02086 

 

The overall proportion susceptible is therefore given by the sum of the values in the 

final column, i.e. 0.2821. 

 

ii) The basic reproduction number can be estimated using the expression 1/s (equation 

5.20), where s is the proportion of the population that is susceptible.  Using the value 

for s obtained in part i) implies that R0=1/0.2821 3.5. 

 

iii) We can obtain an expression for the force of infection in terms of R0 after 

rearranging either the expression R0=1+ L or R0= L, depending on whether the age 

distribution of the population is exponential or rectangular respectively. Figure S5.2, 

which plots the values for pa for 5 year age groups in Bangladesh in 20052 suggests 

that the age distribution was closer to being exponential than to being rectangular.  

 

 
Figure S5.2: Proportion of individuals in different age groups in Bangladesh in 2005 

(pa).  

 

Rearranging the expression R0=1+ L gives the following expression for : 
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Substituting for L=65 years and the value for R0 obtained in part ii) implies that the 

force of infection equals: 

65

15.3
4% per year 

 

iv) Using the relationship 
L

A
/1

1

 
 (equation 5.10) and substituting for L=65 years 

and the value for  obtained in part iii) implies that the average age at infection is 

approximately:

18
65/104.0

1
A

 
years 

 

Note that the values for A and  are much smaller than those obtained in part a).  This 

follows largely from the fact that estimates in part a) did not account for the age 

distribution of the population.   

 

 

c) The following table summarizes the estimates for the average annual risk of infection 

calculated using the expression

 

a

as
/1

1 , where a was taken as the midpoint of the 

age group for the corresponding data point.  The force of infection was calculated using 

the result rate -ln(1-risk) (see page 111). 

 

Age 

group 

(years) 

% 

negative 

Average annual risk 

of infection, 

calculated using 
a

as
/1

1  

Average annual force 

of infection
 

1-5 78.7 0.0767 0.0798 

6-10 47.5 0.0889 0.0931 

11-15 33.3 0.0811 0.0846 

16-20 22.6 0.0793 0.0826 

21-25 18.1 0.0716 0.0743 

26-30 16.4 0.0625 0.0646 

31-35 19.0 0.0491 0.0503 

36-40 11.7 0.0549 0.0565 

 9.7 0.0415 0.0424 

 

We can also use the equation 
a

a
a

s

s 11 .  However, when substituting sa and sa+1 

into this equation, we obtain the risk of infection between age band a and age band 

a+1.  Since each age band is of width 5 years, this infection risk is equivalent to a five 

year risk.  We can convert this five year risk into an annual risk by adapting the logic 

described in section 5.2.2.1.4, which leads to the following equation for the average 

annual risk in age group a: 
5/1)1(1 a

 The force of infection is then calculated using the result rate -ln(1-risk) (see page 111). 

 

The following table summarizes the estimates obtained using this approach: 
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Age 

group 

(years) 

 
 
 
 

% negative 

5 year risk of infection, 

calculated using: 

a

a
a

s

s 11  

Average annual risk 

of infection, 

calculated using: 
a

a

/1)1(1  

Average annual 

force of 

infection 

1-5 78.7 0.3964  0.0961 0.0798 

6-10 47.5 0.2989 0.0686 0.0931 

11-15 33.3 0.3213 0.0746 0.0846 

16-20 22.6 0.1991 0.0434 0.0826 

21-25 18.1 0.0939 0.0195 0.0743 

26-30 16.4 -0.1585 -0.0299 0.0646 

31-35 19.0 0.3842 0.0924 0.0503 

36-40 11.7 0.1709 0.0368 0.0565 

 9.7 - - 0.0424 

 

The estimates obtained using both approaches suggest that the force of infection for 

adults is lower than that for children, e.g. >8% per year for those aged <20 years and 

<8% per year for those aged >20 years.  However, the estimates for adults that are 

based on the equation 
a

a

/1
1 are difficult to interpret, since the proportion of 31-

35 year olds who are seronegative is smaller than that for 26-30 year olds, which leads 

to the (unrealistic) estimate that the risk of infection was negative between the ages 21-

25 and 26-30 year olds. 

 

d)  Figure S5.3 shows a plot of ln(observed proportion seronegative) against the age 

midpoints for the data from Bangladesh.  These figures also clearly highlight the fact 

that the datapoint for individuals aged 31-35 years is an outlier. 

 

 
Figure S5.3: Plot ln(observed proportion seronegative) against the age midpoints for 

the data from Bangladesh in Nessa et al1, with different lines drawn by eye through the 

data points for individuals aged <20years (left-hand figure) and for those aged <15 

years (right-hand figure). 

 

As shown in the left-hand figure, the gradient of the line through the points for 

individuals aged <20 years is steeper than that through the points for individuals aged 

>20 years, suggesting that the force of infection is greater for those aged <20 years 

than for those aged >20 years.   
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However, based on these plots, we cannot conclude that the force of infection changes 

at age 20 years, since, as shown in the right-hand figure, we can also draw a straight 

line through the points for individuals aged over 15 years, which would imply that the 

force of infection changes at about this age.  Ultimately, the age at which the force of 

infection is assumed to change needs to be biologically plausible, e.g. consistent with 

changes in behaviour, possible exposure to the infection, contact patterns etc at ages 

15 or 20 years.  

 

The gradient of the line through the points for individuals aged <15 years is about 

1.6/15 0.11 per year, suggesting that the force of infection in this age group is about 

11% per year.  The gradient of the line through the points for individuals aged >15 

years is about 0.7/35 0.02 per year, suggesting that the force of infection in this age 

group is about 2% per year.  

 

 

 

5.3  The following figure shows a plot of ln(observed proportion seropositive) for the 

mumps data in section 5.2.3.2.2.  The gradient of the line through the points for 

individuals aged <13 years is steeper than that through the points for individuals aged 

>13 years (3/13 0.23 per year vs 1/35 0.03 per year).  This suggests that the force of 

infection is also greater for those aged <13 years than for those aged >13 years (23% 

vs 3% per year respectively).   

 

 
Figure S5.4:  Plot of ln(observed proportion seronegative) for the mumps data in 

section 5.2.3.2.2. 
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5.4  i) One informal argument that is sometimes used to obtain this result is that, for 

realistic values of L, 1/L is small, in comparison with , and therefore 
L/1

1
 must be 

approximately equal to 
1

. 

 

We can also apply a formal mathematical argument, which uses the result that, for 

small values of x (i.e. values that are close to zero), the expression 
x1

1
 is 

approximately equal to x1  (see proof at the end of the solution to this question).   

 

This argument is as follows: 

 

We begin by noting that the equation 
L

A
/1

1

 
can be rewritten in the form 

x1

1
 

as follows: 

L

A
1

1

11
 

 

 

S5.1 

For realistic values of the average life expectancy and for large values of the force of 

infection, 
L

1
 is close to zero, and so, according to the result x

x
1

1

1
,  the term in 

brackets in equation S5.1 is approximately equal to 
L

1
1 .  Substituting this 

approximation into equation S5.1 leads to the following:  

 

LL
A

2

111
1

1
 

 

If both the force of infection and the life expectancy are sufficiently large, then the 

second term in this equation is negligible (i.e. 0
1
2L

) and so A
1

.  

 

 

ii) To show that the expression 
L

L

e

eL
A

1

)1(11
 approximates to 1/ , we begin 

by observing that, for sufficiently large values for the life expectancy and the force of 

infection, e- L is close to zero.  Using the result that for small values of x (i.e. values that 

are close to zero), x
x

1
1

1
, we see that 

L

L
e

e
1

1

1
.  Substituting this 

approximation into the equation for A, we obtain the following result: 

eeL

e

eL
A

LL

L

L )1)()1(1(

1

)1(11
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This equation simplifies to the following: 

LeLe
A

LL )1(1 2

If the force of infection is sufficiently large and for realistic values for the life 

expectancy, both 0)1(2 Le L
 and 0LLe , which implies that A

1
 

 

 

Proof of the result x
x

1
1

1
 for small values of x  

This result can be derived by using the fact that an expression of the form 
x1

1
 can 

be written using the following Binomial expansion: 

 

1132

1

32
1

)1(1

)!1(

)1)..(21)(11)(1(

!3

)21)(11)(1(

!2

)11)(1(
1)1(

1

1

nn

n

xxxx

n

xn

xx
xx

x

 

For small values of x, terms in x2, x3 

can be ignored.  Consequently x
x

1
1

1
. 

 

The result that x
x

1
1

1
 follows after repeating the above argument but replacing 

x  for x. 

 

 

5.5  The following figure shows that the proportion of individuals who had hookworm 

ova in their stools (Sa/Na) increases with age and then reaches a plateau or (plausibly) 

decreases with increasing age.   
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We might therefore use a reversible model to describe the data, which assumes that 

the age-specific proportion infected eventually reaches a plateau with increasing age.  

Alternatively, a 2-stage model or a compound catalytic model might be appropriate, 

since these assume that the proportion positive peaks before subsequently decreasing 

with increasing age.  In fact, the authors of 3 used a compound model to analyse the 

data.   

 

 

5.6  a) Assuming that maternal immunity is lost at a constant rate, , the rate of change 

in the proportion of individuals who have maternal immunity (m(a)) and the proportion 

who are susceptible (s(a)) are given by the following equations: 

)()(
)(

)(
)(

asam
da

ads

am
da

adm

 

 

The differential equation for m(a) is of the form )(
)(

tkQ
dt

tdQ
 and can be solved to 

give the following (see section 3.5.1): 
aemam )0()(

 

where m(0) is the proportion of inewborns who have maternal immunity.  Since all 

individuals are assumed to be born with maternal immunity, m(0)=1, and so, 

substituting for m(0)=1 into the above equation gives m(a)=e- a.  

 

Substituting for m(a)=e- a  into the differential equation for s(a), we obtain the following 

equation: 

)(
)(

ase
da

ads a
 

which can be rewritten as follows:

aeas
da

ads
)(

)(
 

 

steps below: 

 

Step 1. Multiply both sides of the equation by e a, to obtain the following: 

aaaa eeease
da

ads
)(

)(
 

 

Note that, according to the rules of differentiation (section B.5), the left-hand side of this 

equation is equivalent to the derivative of 
aeas )(  with respect to a, and so the 

equation can be rewritten as follows: 

 

aaa eeeas
da

d
))((  

S5.2 
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Step 2. We now integrate both sides of equation S5.2 between 0 and a to obtain the 

following: 
a

aa

a

a daeedaeas
da

d

00

))((  
 

S5.3 

 

Since integration is the converse of differentiation, the left-hand side equation S5.3 

simplifies to: 

)0()()( 0 seaseas aaa
 

 

However, s(0)=0 (since no individuals are assumed to be susceptible at birth) and 

therefore the left-hand side of equation S5.3 simplifies to 
aeas )( . 

 

By the rules of integration (section B.6) the right-hand side of equation S5.3 simplifies 

to the following:   

 

ee a

a

a )(

0

)(  

 

Step 3. Equating the expressions obtained from integrating the left-hand and right-hand 

sides of equation S5.3 leads to the following:  

eeas aa )()(  

 

Dividing both sides of this equation by e a leads to the intended result: 

ee
as

aa )(
)(  

 

b) Note that when s(a) is at a minimum, 0
)(

da

ads
.  We can therefore obtain the age 

at which the proportion of the population that is susceptible is at a minimum by 

identifying the values for a for which 0
)(

da

ads
.   

Differentiating the equation for s(a) that is discussed in part a), we obtain the following: 

 

ee

da

ads aa )()(
 

Setting this equation to zero, we see that the following must be satisfied for the 

proportion susceptible to be at a minimum: 

0aa ee  

 

Multiplying both sides of this equation by e- a and rearranging the resulting equation, 

implies that the following must hold: 
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e a)(
 

Taking the natural logs of both sides of this equation and then dividing by -  leads to 

the intended result that the minimum in the proportion susceptible occurs when  

a
)/ln(

 

 

5.7  a) Proof of the result that 
m

A
1

, or equivalently,
 L

A
/1

1
for 

populations with an exponential age distribution, where m=1/L is the average 

mortality rate. 

 

Suppose that N0 individuals are born each year.  Assuming a constant mortality rate of 

m, the number of individuals of age a is given by the equation (see section 3.5.1): 

 
maeNaN 0)(  

 

Assuming a constant force of infection, , a proportion e- a of these individuals will be 

susceptible, and so the number of susceptible individuals of age a (S(a)) is obtained by 

multiplying N(a) by e- a , i.e.  

 

S(a) = N(a)e- a = N0e
-( a 

 

After substituting this expression into equation 5.9, we obtain the following equation: 

 

0

)(

0

0

)(

0

0

0

)()(

)()(

daeN

daeNa

daaSa

daaSaa
A

am

am

 

 

S5.4 

 

Using the techniques discussed in section B.6, the numerator of this equation simplifies 

to the following: 

2

0

0

2

)()(

0
0

)(

0
)()()( m

N

m

e

m

ae
NdaeNa

amam
am  

S5.5 

 

Similarly, the denominator in equation S5.5 simplifies to the following: 

m

N

m

e
NdaeN

am
am 0

0

)(

0
0

)(

0
)(

 

S5.6 

 

Substituting the right-hand sides of equations S5.5 and S5.6 into the numerator and 

denominator of equation S5.4, and cancelling common terms from the numerator and 

denominator leads to our intended expression for A: 

m

m

N

m

N

A
1)(

0

2

0
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b) Proof of the result that, for populations with a rectangular age distribution, 

with a life expectancy of L, and assuming random mixing, 

L

L

e

eL
A

1

)1(11
 

 

Suppose that N0 individuals are born into the population each year.  If the population 

has a rectangular age distribution in which no individuals die until age L, then the 

number of individuals of age a also equals N0.   

 

A proportion e- a of these individuals will be susceptible, and so the number of 

susceptible individuals of age a (S(a)) is obtained by multiplying N0 by e- a , i.e.  

 

S(a) = N0e
- a 

 

After substituting this expression into equation 5.9, we obtain the following equation: 

L
a

L
a

daeN

daeNa

daaSa

daaSaa
A

0
0

0
0

0

0

)()(

)()(
 

 

 

S5.7 

 

Using the techniques discussed in section B.5, the numerator of this expression 

simplifies to the following: 

eLN

eLe
N

eae
NdaeNa

L

LL
L

aa
L

a

))1(1(

1

0

220

0

20
0

0

 

 

 

 

S5.8 

 

Similarly, the denominator in equation 5.7 simplifies to the following: 

 

)1(

)1(

0

0

0

0
0

0

L

LL
a

L
a

eN

eNe
NdaeN

 

 

 

S5.9 

 

Substituting the right-hand sides of equations S5.8 and S5.9 into the numerator and 

denominator respectively of equation S5.7, and cancelling out the common term N0 

leads to the intended result:  

)1(

)1(1

)1(

))1(1(

0

0

L

L

L

L

e

eL

eN

eLN
A  

 

5.8  For a reversible catalytic model, the differential equations for the rate of change in 

the proportion susceptible and proportion currently infected is given by the following: 
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)()(
)(

)()(
)(

azras
da

adz

azras
da

ads

s

s

 

 

In this model, the proportion of individuals of age a that are currently susceptible is 

given by 1-proportion currently infected, i.e.  s(a) = 1-z(a). 

 

Substituting this expression for s(a) into the differential equation for z(a) leads to the 

following equation: 

)()(

)())(1(
)(

azr

azraz
da

adz

s

s
 

 

 

 

S5.10 

 

At a given point on the plateau, 0
)(

da

adz
.  Equating equation S5.10 to zero, leads to 

the following result: 

0)()( azrs  

 

After rearranging this equation, we obtain our intended result, i.e.  
sr

az )(  

 

 

5.9  a i) With the information provided, we can use the equation 
)1(

'
v

A
A  (equation 

5.34) to work out the long-term average age at infection for mumps following the 

introduction of vaccination.  Substituting for A=4 years and v=0.6 into this equation 

(assuming for now, that the vaccine efficacy is 100%), the long-term average age at 

infection is given by 10
)6.01(

4
'A years.   

 

Given the debate about the efficacy of the mumps component of the MMR vaccine 4-6, 

it would be sensible to assume a vaccine efficacy of <100%.  Assuming a vaccine 

efficacy of 85%, the long-term average age at infection equals:  

2.8
)51.01(

4

)6.085.01(

4
'A

 

years 

 

a ii) The long-term average force of infection  can be obtained after rearranging the 

 
expression 

m
A

'

1
'  (equation 5.33) and substituting our estimate of  that we 

obtained in part i) into the resulting expression.   

 

For example, the expression 
m

A
'

1
'  can be rearranged to give the following 

expression for : 
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m
A'

1
'

 
 

Substituting for  = 10 years (based on a vaccine efficacy of 100%), and m=1/60 per 

year into this equation leads to the following value for : 

 

0833.0
60

5

60

1

10

1
'  per year.  

 

Substituting for = 8.2 years (based on a vaccine efficacy of 85%) leads to an 

estimate for the average force of infection of :

 
106.0

60

1

2.8

1
' per year. 

 

a iii) and a iv) The proportion susceptible and the infection incidence in the long-term 

can be calculated using equations 5.31 and 5.36, leading to the following values: 

 

 100% vaccine efficacy 85% vaccine efficacy 

Age 

(years) 

Proportion 

susceptible 

aev ')1(  

Average annual 

number of new 

infections per 

100,000 

( 000,100)'(' as )

Proportion 

susceptible 

aev ')1(  

Average annual 

number of new 

infections per 

100,000 

 ( 000,100)'(' as )

15 0.115 955 0.1 1060 

25 0.05 415 0.035 368 

35 0.022 180 0.012 128 

 

b) As shown by the calculations below, the average annual number of mumps 

infections per 100,000 population among 15-35 year olds in the long-term following the 

introduction of vaccination is somewhat higher than that before the introduction of 

vaccination.  You might therefore advise the government to aim to attain a coverage 

which is much higher than 60% (e.g. 95%) and to proceed with caution when 

introducing MMR vaccination if it thinks that a coverage of only 60% can be achieved.  

 

It might want to consider having a catch-up campaign covering the birth cohorts at 

greatest risk, and monitor the age-specific proportion susceptible in the population 

through seroprevalence surveys.   Most importantly, before proceeding, it should also 

consider the effect that 60% coverage of MMR vaccination would have on the burden 

of measles, rubella and Congenital Rubella Syndrome.  

 

Calculations of the number of mumps infections per 100,000 population before 

the introduction of vaccination: 

For these calculations, we first need to estimate the force of
 
infection that is predicted 

in the absence of
 
vaccination. Rearranging the equation 

m
A

1
 (equation 5.10) we 
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obtain the following equation for the force of infection in the absence of vaccination: 

m
A

1
.  Substituting for A=4 years (the average age at infection before the 

introduction of vaccination) and m=1/60 per year into this equation, we obtain the 

following for : 

233.0
60

1

4

1
per year.  

 

Using this estimate for the force of infection, we obtain the following values for the 

proportion susceptible and the average annual numbers of infections per 100,000 

population in different age groups before the introduction of vaccination:  

 

Age (years) Proportion 

susceptible 

(s(a)=
ae ) 

Average annual number of 

new infections per 100,000 

 ( 100000)(as )

15 0.03 705 

25 0.003 68 

35 (0) 7 

 

c)   If the herd immunity effects of vaccination are not accounted for, the proportion 

susceptible and the number of infections per 100,000 population in the long-term 

following the introduction of vaccination would be given by the values calculated in part 

b) but multiplied by (1-v), where v is the proportion of individuals that are effectively 

vaccinated.  v is given by the expression vaccine coverage×vaccine efficacy.  The 

values obtained assuming that the vaccine efficacy is 100% and 85% are provided 

below. These show that the static model greatly underestimates the long-term numbers 

of mumps infections per 100,000 population in 15-35 year olds following the 

introduction of vaccination. 

 

 100% vaccine efficacy 85% vaccine efficacy 

Age 

(years) 

Proportion 

susceptible
 Average annual 

number of new 

infections per 100,000 

Proportion 

susceptible
 Average annual 

number of new 

infections per 100,000 

15 0.012 282 0.015 345 

25 0.001 27 0.001 33 

35 0 3 0 3 

 

 

5.10  a) Multiplying both sides of equation 5.29 by (1-v), we obtain the following: 

1')1(0 LvR  

 

Subtracting both sides of this equation by 1 and dividing by L, we obtain the following 

equation: 

'
1)1(0

L

vR
 

 

S5.11 
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b) and d) Figure S5.5 compares the plot of 
L

vR 1)1(
' 0  against that of 

)1(' v .  

Figure S5.5: Predictions of the average annual long-term force of infection following 

the introduction of vaccination, calculated using 
L

vR 1)1(
' 0  (dotted line) for 

different levels of the immunization coverage among newborns, in a A. low 

transmission (R0=7) and B. a high transmission setting (R0=12).  The solid line shows 

the annual force of infection which would be seen if the force of infection was directly 

proportional to the proportion of individuals that are protected by vaccination(v), i.e. if 

(1-v).   

 

 

c) You might have expected the force of infection as predicted by the equation 

)1(' v
 
to decrease more slowly with increased vaccination coverage than that 

predicted by the line '
1)1(0

L

vR
, since the gradient of the latter line is steeper 

than that for )1(' v . 

 

For example, recall that the gradient of the line '
1)1(0

L

vR
 is the factor by which 

we v v).  The coefficient of v in this equation, and 

therefore the gradient of the line is -R0/L.  Substituting for R0=1+ L (equation 5.21) into 

this equation, we see that the coefficient is equal to:  

L

L

L

R 10

 

The expression for the gradient simplifies to the following: 

L

1

 

 

In contrast, the gradient of the line )1(' v  is just . 
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Since 
L

1
 

 
)1(' v  

will be steeper than that given by equation 5.11.   

 

e) You should find that it is not possible to rearrange the equation to obtain an explicit 

expression for  in terms of R0, L and v, since the numerator has a term and the 

denominator has a term 
Le '
.   

 

Instead, we need to use iterative techniques to obtain the value for which results 

from a given value for R0, v and L, as follows: 

 

We first rearrange the equation 
)1)(1(

'
'0 Lev

L
R  so that we have an expression 

for  in terms of all the other terms in the equation.  For example, we could rearrange 

the equation to obtain the following:  

L

evR L )1)(1(
'

'

0  
 

S5.12 

 

If we substitute some value for denoted by '

0
) into the right-hand side of this 

equation, then for given values for R0, L and v, we will obtain another value for (we 

shall denote it by 
'

1 ).  If we then substitute 
'

1  into the right-hand side of equation 

5.12, we obtain another value for (we shall denote it by 
'

2 ).  Repeating this process 

several times, we eventually obtain a series of values, ,,,, '

3

'

2

'

1

'

0
, and we find that 

the difference between successive values of 
'

i  becomes progressively smaller, until 

the value obtained satisfies equation S5.12 (see Table S5.1).  These iterations can be 

set up in a spreadsheet. 
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Table S5.1: Illustration of how the post-vaccination force of infection at equilibrium, , 

which satisfies the equation 
)1)(1(

'
'0 Lev

L
R  may be calculated iteratively from 

the equation 
L

evR
L

i

i )1)(1(0
1 , assuming that R0=7, L=70 years and v=0.1.  In 

this instance, the average force of infection which might be expected if the vaccination 

coverage among newborns is 10% is 0.090 per year. 

Iteration 

number 
i  (per year) 

Value for 
L

evR
Li )1)(1(0

 

0 05.00  2.0
70

)1)(1.01(7 7005.0e
per year. 

1 2.01  0899999.0
70

)1)(1.01(7 702.0e
 per year 

2 0899999.02  0898347.0
70

)1)(1.01(7 700899999.0e
 per year 

3 0898328.03  0898328.0
70

)1)(1.01(7 700898328.0e
 per year 
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